Entangled rings

被引:354
作者
O'Connor, KM [1 ]
Wootters, WK [1 ]
机构
[1] Williams Coll, Dept Phys, Williamstown, MA 01267 USA
来源
PHYSICAL REVIEW A | 2001年 / 63卷 / 05期
关键词
D O I
10.1103/PhysRevA.63.052302
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Consider a ring of N qubits in a translationally invariant quantum state. We ask to what extent each pair. of nearest neighbors can be entangled. Under certain assumptions about the form of the state, we find a formula for the maximum possible nearest-neighbor entanglement. We then compare this maximum with the entanglement achieved by the ground state of an antiferromagnetic ring consisting of an even number of spin-1/2 particles. We find that, though the antiferromagnetic ground state typically does not maximize the nearest-neighbor entanglement relative to all other states, it does so relative to other states having zero z component of spin.
引用
收藏
页数:9
相关论文
共 34 条
[11]   LINEAR MAGNETIC CHAINS WITH ANISOTROPIC COUPLING [J].
BONNER, JC ;
FISHER, ME .
PHYSICAL REVIEW, 1964, 135 (3A) :A640-+
[12]   Persistent entanglement in arrays of interacting particles [J].
Briegel, HJ ;
Raussendorf, R .
PHYSICAL REVIEW LETTERS, 2001, 86 (05) :910-913
[13]   Entanglement splitting of pure bipartite quantum states [J].
Bruss, D .
PHYSICAL REVIEW A, 1999, 60 (06) :4344-4348
[14]   Distributed entanglement [J].
Coffman, V ;
Kundu, J ;
Wootters, WK .
PHYSICAL REVIEW A, 2000, 61 (05) :5
[15]   Three qubits can be entangled in two inequivalent ways [J].
Dur, W. ;
Vidal, G. ;
Cirac, J.I. .
Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 62 (06) :062314-062311
[16]  
Dür W, 2001, PHYS REV A, V63, DOI 10.1103/PhysRevA.63.020303
[17]  
EISERT J, QUANTPH0007081
[18]   Entanglement of a pair of quantum bits [J].
Hill, S ;
Wootters, WK .
PHYSICAL REVIEW LETTERS, 1997, 78 (26) :5022-5025
[19]   Separability of mixed states: Necessary and sufficient conditions [J].
Horodecki, M ;
Horodecki, P ;
Horodecki, R .
PHYSICS LETTERS A, 1996, 223 (1-2) :1-8
[20]  
Hulthen L., 1938, ARK MAT ASTRON FYS, V26, P11