Trimethylated chitosans as non-viral gene delivery vectors: Cytotoxicity and transfection efficiency

被引:305
作者
Kean, T [1 ]
Roth, S [1 ]
Thanou, M [1 ]
机构
[1] Cardiff Univ, Welsh Sch Pharm, Ctr Polymer Therapeut, Cardiff CF10 3XF, S Glam, Wales
关键词
trimethyl chitosan; oligomers; polymers; cytotoxicity; gene delivery;
D O I
10.1016/j.jconrel.2005.01.001
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Chitosans are linear polysaccharides of natural origin that show potential as carriers in drug and gene delivery. Introducing quaternisation on the chitosan backbone renders the polymer soluble over a wider pH range and confers controlled cationic character. This study aims to investigate the effect of increasing quaternisation and therefore, positive charge on cell viability and transfection. Oligomeric and polymeric chitosans were trimethylated, the toxicity and transfection efficiency of these derivatives were tested with respect to increasing degree of trimethylation. The cytoxicity of polymer and oligomer derivatives alone and of their complexes with plasmid DNA were determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay on COS-7 (monkey kidney fibroblasts) and MCF-7 (epithelial breast cancer) cells. Transfection efficiency was investigated using the pGL3 luciferase reporter gene on the same cell lines. Complexes were characterised for their stability by gel electrophoresis. Cytotoxicity results showed that all derivatives were significantly less toxic than linear polyethylenimine (PEI). A general trend of increasing toxicity with increasing degree of trimethylation was seen. However, higher toxicity was seen in polymeric chitosan derivatives over oligomeric chitosan derivatives at similar degrees of trimethylation. All derivatives complexed pGL3 Inc plasmid DNA efficiently at 10:1 ratio and three (TM044, TMC57 and TMC93) were able to transfect MCF-7 cells with greater efficiency than PEI; 16, 23 and 50-fold, respectively. TMC57, TMC93 and all TMOs gave appreciable transfection of COS-7 cells. (c) 2005 Elsevier B.V All rights reserved.
引用
收藏
页码:643 / 653
页数:11
相关论文
共 41 条
[1]   Parallel synthesis and biophysical characterization of a degradable polymer library for gene delivery [J].
Akinc, A ;
Lynn, DM ;
Anderson, DG ;
Langer, R .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (18) :5316-5323
[2]   Nonviral gene delivery: Towards artificial viruses [J].
Belguise-Valladier, P ;
Behr, JP .
CYTOTECHNOLOGY, 2001, 35 (03) :197-201
[3]   Monomolecular collapse of plasmid DNA into stable virus-like particles [J].
Blessing, T ;
Remy, JS ;
Behr, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (04) :1427-1431
[4]  
BROOKS G, 2002, GENE THERAPY
[5]   Gene delivery with synthetic (non viral) carriers [J].
Brown, MD ;
Schätzlein, AG ;
Uchegbu, IF .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2001, 229 (1-2) :1-21
[6]   Effect of size and serum proteins on transfection efficiency of poly((2-dimethylamino)ethyl methacrylate)-plasmid nanoparticles [J].
Cherng, JY ;
vandeWetering, P ;
Talsma, H ;
Crommelin, DJA ;
Hennink, WE .
PHARMACEUTICAL RESEARCH, 1996, 13 (07) :1038-1042
[7]   IN-VITRO CYTOTOXICITY OF MACROMOLECULES IN DIFFERENT CELL-CULTURE SYSTEMS [J].
CHOKSAKULNIMITR, S ;
MASUDA, S ;
TOKUDA, H ;
TAKAKURA, Y ;
HASHIDA, M .
JOURNAL OF CONTROLLED RELEASE, 1995, 34 (03) :233-241
[8]   Mesenchymal stem cells, MG63 and HEK293 transfection using chitosan-DNA nanoparticles [J].
Corsi, K ;
Chellat, F ;
Yahia, L ;
Fernandes, JC .
BIOMATERIALS, 2003, 24 (07) :1255-1264
[9]   Non-viral gene delivery systems [J].
Davis, ME .
CURRENT OPINION IN BIOTECHNOLOGY, 2002, 13 (02) :128-131
[10]   NEW METHOD FOR THE QUATERNIZATION OF CHITOSAN [J].
DOMARD, A ;
RINAUDO, M ;
TERRASSIN, C .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 1986, 8 (02) :105-107