Any AND-OR formula of size can be evaluated in time on a quantum computer

被引:39
作者
Ambainis, Andris [1 ,2 ]
Childs, Andrew M. [2 ,3 ]
Reichardt, Ben W. [3 ]
Spalek, Robert [4 ]
Zhang, Shengyu [3 ]
机构
[1] Latvian State Univ, Dept Comp Sci, Riga, Latvia
[2] Univ Waterloo, Dept Cominator & Optimizat, Inst Quntum Comp, Waterloo, ON N2L 3G1, Canada
[3] CALTECH, Inst Quantum Informat, Pasadena, CA 91125 USA
[4] Univ Calif Berkeley, Berkeley, CA 94720 USA
来源
48TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS | 2007年
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1109/FOCS.2007.57
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For any AND-OR formula of size N, there exists a bounded-error N1/2+o(1) -time quantum algorithm, based on a discrete-time quantum walk, that evaluates this formula on a black-box input. Balanced, or "approximately balanced," formulas can be evaluated in O(root N) queries, which is optimal. It follows that the (2 - o(1))th power of the quantum query complexity is a lower bound on the formula size, almost solving in the positive an open problem posed by Laplante, Lee and Szegedy.
引用
收藏
页码:363 / +
页数:2
相关论文
共 21 条
[1]   Polynomial degree vs. quantum query complexity [J].
Ambainis, A .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2006, 72 (02) :220-238
[2]  
AMBAINIS A, 2007, QUANTPH07043628
[3]  
[Anonymous], [No title captured], DOI [10.1145/237814.237866, DOI 10.1145/237814.237866]
[4]   A lower bound on the quantum query complexity of read-once functions [J].
Barnum, H ;
Saks, M .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2004, 69 (02) :244-258
[5]   Quantum lower bounds by polynomials [J].
Beals, R ;
Buhrman, H ;
Cleve, R ;
Mosca, M ;
De Wolf, R .
JOURNAL OF THE ACM, 2001, 48 (04) :778-797
[6]   SIZE-DEPTH TRADEOFFS FOR BOOLEAN-FORMULAS [J].
BONET, ML ;
BUSS, SR .
INFORMATION PROCESSING LETTERS, 1994, 49 (03) :151-155
[7]  
BSHOUTY NH, 1991, PROCEEDINGS - 32ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, P334, DOI 10.1109/SFCS.1991.185387
[8]  
Buhrman H., 1998, Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, P63, DOI 10.1145/276698.276713
[9]  
CHILDS A, 2007, QUANTPH0703015
[10]  
CHILDS AM, 2007, QUANTPH0702160