Role of protein methylation in regulation of transcription

被引:346
作者
Lee, DY
Teyssier, C
Strahl, BD
Stallcup, MR
机构
[1] Univ So Calif, Dept Pathol, Los Angeles, CA 90089 USA
[2] Univ So Calif, Dept Biochem & Mol Biol, Los Angeles, CA 90089 USA
[3] Univ N Carolina, Sch Med, Dept Biochem & Biophys, Chapel Hill, NC 27599 USA
关键词
D O I
10.1210/er.2004-0008
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
In the last few years, the discovery of lysine and arginine methylation in histones and other proteins and the enzymes that carry out these posttranslational modifications has added a new dimension to the signal transduction field. In particular, there has been a huge surge in our understanding of how methylation of nucleosomal histones at specific lysine or arginine residues affects chromatin conformations and either facilitates or inhibits transcription from neighboring genes. It appears that the responsible methyltransferases can be targeted in some cases to specific genes and in other cases to broader regions of euchromatin or heterochromatin. Methylation of histones is mechanistically linked to other types of histone modifications, such as acetylation, phosphorylation, and monoubiquitylation; combinations of these modifications cooperate to regulate chromatin structure and transcription by stimulating or inhibiting binding of specific proteins. Although lysine methylation has thus far been observed almost exclusively on histones, arginine methylation has been observed on a variety of other proteins associated with gene regulation, including DNA-binding transcriptional activators, transcriptional coactivators, and many RNA binding proteins involved in RNA processing, transport, and stability. Thus, lysine and arginine methylation of proteins, like many other types of posttranslational modifications, are regulated steps of many specific signaling pathways.
引用
收藏
页码:147 / 170
页数:24
相关论文
共 206 条
[11]   Methylation at arginine 17 of histone H3 is linked to gene activation [J].
Bauer, UM ;
Daujat, S ;
Nielsen, SJ ;
Nightingale, K ;
Kouzarides, T .
EMBO REPORTS, 2002, 3 (01) :39-44
[12]   STEROID-HORMONE RECEPTORS - MANY ACTORS IN SEARCH OF A PLOT [J].
BEATO, M ;
HERRLICH, P ;
SCHUTZ, G .
CELL, 1995, 83 (06) :851-857
[13]   RETRACTED: Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1 (Retracted article. See vol. 521, pg. 110, 2015) [J].
Beisel, C ;
Imhof, A ;
Greene, J ;
Kremmer, E ;
Sauer, F .
NATURE, 2002, 419 (6909) :857-862
[14]   Histone modifications in transcriptional regulation [J].
Berger, SL .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2002, 12 (02) :142-148
[15]   Methylation of histone H3 Lys 4 in coding regions of active genes [J].
Bernstein, BE ;
Humphrey, EL ;
Erlich, RL ;
Schneider, R ;
Bouman, P ;
Liu, JS ;
Kouzarides, T ;
Schreiber, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (13) :8695-8700
[16]   Saccharomyces cerevisiae Set1p is a methyltransferase specific for lysine 4 of histone H3 and is required for efficient gene expression [J].
Boa, S ;
Coert, C ;
Patterton, HG .
YEAST, 2003, 20 (09) :827-835
[17]   Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes [J].
Boggs, BA ;
Cheung, P ;
Heard, E ;
Spector, DL ;
Chinault, AC ;
Allis, CD .
NATURE GENETICS, 2002, 30 (01) :73-76
[18]   Gene silencing -: Trans-histone regulatory pathway in chromatin [J].
Briggs, SD ;
Xiao, TJ ;
Sun, ZW ;
Caldwell, JA ;
Shabanowitz, J ;
Hunt, DF ;
Allis, CD ;
Strahl, BD .
NATURE, 2002, 418 (6897) :498-498
[19]   Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae [J].
Briggs, SD ;
Bryk, M ;
Strahl, BD ;
Cheung, WL ;
Davie, JK ;
Dent, SYR ;
Winston, F ;
Allis, CD .
GENES & DEVELOPMENT, 2001, 15 (24) :3286-3295
[20]  
BROWN KL, 1998, RRD INORG CHEM, V1, P1