Measurement of the in-depth stress profile in hydrogenated microcrystalline silicon thin films using Raman spectrometry

被引:48
作者
Paillard, V
Puech, P
Sirvin, R
Hamma, S
Cabarrocas, PRI
机构
[1] Univ Toulouse 3, CNRS, Phys Solides Lab, UMR 5477, F-31062 Toulouse 4, France
[2] Ecole Polytech, CNRS, UMR 7647, Lab Phys Interfaces & Couches Minces, F-91128 Palaiseau, France
关键词
D O I
10.1063/1.1396828
中图分类号
O59 [应用物理学];
学科分类号
摘要
Raman spectrometry is used to measure stress in hydrogenated microcrystalline silicon thin films. Moreover, by the use of different excitation wavelengths, from red to near ultraviolet, we can probe different film depths and get information on the stress distribution along the growth direction. For films deposited by standard rf glow discharge at different substrate temperatures, on glass substrates, we found large stress gradients. Indeed, the high compressive stress (up to 1 GPa) in the bulk of the film, close to the glass substrate, reduces and becomes tensile as the film free surface is approached. Moreover, the higher the substrate temperature, the higher the stress gradient. (C) 2001 American Institute of Physics.
引用
收藏
页码:3276 / 3279
页数:4
相关论文
共 17 条
[1]  
ANNASTASSAKIS E, 1985, PHYSICAL PROBLEMS MI, P128
[2]   Stress gradient and structural properties of atmospheric and reduced pressure deposited polysilicon layers for micromechanical sensors [J].
Benrakkad, MS ;
LopezVillegas, JM ;
Samitier, J ;
Morante, JR ;
Kirsten, M ;
Lange, P .
SENSORS AND ACTUATORS A-PHYSICAL, 1995, 51 (01) :9-12
[3]   RAMAN-SCATTERING IN PURE AND HYDROGENATED AMORPHOUS-GERMANIUM AND SILICON [J].
BERMEJO, D ;
CARDONA, M .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1979, 32 (1-3) :405-419
[4]   New features of the layer-by-layer deposition of microcrystalline silicon films revealed by spectroscopic ellipsometry and high resolution transmission electron microscopy [J].
Cabarrocas, PRI ;
Hamma, S ;
Hadjadj, A ;
Bertomeu, J ;
Andreu, J .
APPLIED PHYSICS LETTERS, 1996, 69 (04) :529-531
[5]   SUBSTRATE SELECTIVITY IN THE FORMATION OF MICROCRYSTALLINE SILICON - MECHANISMS AND TECHNOLOGICAL CONSEQUENCES [J].
CABARROCAS, PRI ;
LAYADI, N ;
HEITZ, T ;
DREVILLON, B ;
SOLOMON, I .
APPLIED PHYSICS LETTERS, 1995, 66 (26) :3609-3611
[6]   Plasma enhanced chemical vapor deposition of amorphous, polymorphous and microcrystalline silicon films [J].
Cabarrocas, PRI .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2000, 266 :31-37
[7]  
DeWolf I, 1996, SEMICOND SCI TECH, V11, P139, DOI 10.1088/0268-1242/11/2/001
[8]   Contribution of ions to the growth of amorphous, polymorphous, and microcrystalline silicon thin films [J].
Hamers, EAG ;
Morral, AFI ;
Niikura, C ;
Brenot, R ;
Cabarrocas, PRI .
JOURNAL OF APPLIED PHYSICS, 2000, 88 (06) :3674-3688
[9]   Low temperature growth of highly crystallized silicon thin films using hydrogen and argon dilution [J].
Hamma, S ;
Cabarrocas, PRI .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1998, 227 :852-856
[10]  
HAMMA S, IN PRESS SOLAR ENERG