The Cell-Non-Autonomous Nature of Electron Transport Chain-Mediated Longevity

被引:827
作者
Durieux, Jenni [1 ]
Wolff, Suzanne [2 ]
Dillin, Andrew [1 ]
机构
[1] Salk Inst Biol Studies, Howard Hughes Med Inst, Glenn Ctr Aging Res, La Jolla, CA 92037 USA
[2] Scripps Res Inst, Dept Mol & Expt Med, La Jolla, CA 92037 USA
关键词
ELEGANS LIFE-SPAN; GENE-EXPRESSION; ENDOCRINE REGULATION; OXIDATIVE STRESS; DROSOPHILA; IDENTIFICATION; REQUIREMENTS; DETERMINANT; MUTANTS; DAF-16;
D O I
10.1016/j.cell.2010.12.016
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The life span of C. elegans can be increased via reduced function of the mitochondria; however, the extent to which mitochondrial alteration in a single, distinct tissue may influence aging in the whole organism remains unknown. We addressed this question by asking whether manipulations to ETC function can modulate aging in a cell-non-autonomous fashion. We report that the alteration of mitochondrial function in key tissues is essential for establishing and maintaining a prolongevity cue. We find that regulators of mitochondrial stress responses are essential and specific genetic requirements for the electron transport chain (ETC) longevity pathway. Strikingly, we find that mitochondrial perturbation in one tissue is perceived and acted upon by the mitochondrial stress response pathway in a distal tissue. These results suggest that mitochondria may establish and perpetuate the rate of aging for the whole organism independent of cell-autonomous functions.
引用
收藏
页码:79 / 91
页数:13
相关论文
共 55 条
[1]   SPATIAL CONTROL OF GUT-SPECIFIC GENE-EXPRESSION DURING CAENORHABDITIS-ELEGANS DEVELOPMENT [J].
AAMODT, EJ ;
CHUNG, MA ;
MCGHEE, JD .
SCIENCE, 1991, 252 (5005) :579-582
[2]  
[Anonymous], PLOS GENET
[3]   Regulation of life-span by germ-line stem cells in Caenorhabditis elegans [J].
Arantes-Oliveira, N ;
Apfeld, J ;
Dillin, A ;
Kenyon, C .
SCIENCE, 2002, 295 (5554) :502-505
[4]   Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response [J].
Benedetti, Cristina ;
Haynes, Cole M. ;
Yang, Yun ;
Harding, Heather P. ;
Ron, David .
GENETICS, 2006, 174 (01) :229-239
[5]   Two neurons mediate diet-restriction-induced longevity in C-elegans [J].
Bishop, Nicholas A. ;
Guarente, Leonard .
NATURE, 2007, 447 (7144) :545-+
[6]   Extended longevity in mice lacking the insulin receptor in adipose tissue [J].
Blüher, M ;
Kahn, BB ;
Kahn, CR .
SCIENCE, 2003, 299 (5606) :572-574
[7]   Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands [J].
Broughton, SJ ;
Piper, MDW ;
Ikeya, T ;
Bass, TM ;
Jacobson, J ;
Driege, Y ;
Martinez, P ;
Hafen, E ;
Withers, DJ ;
Leevers, SJ ;
Partridge, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (08) :3105-3110
[8]  
Bürglin TR, 2002, INT J DEV BIOL, V46, P115
[9]   IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA [J].
Calfon, M ;
Zeng, HQ ;
Urano, F ;
Till, JH ;
Hubbard, SR ;
Harding, HP ;
Clark, SG ;
Ron, D .
NATURE, 2002, 415 (6867) :92-96
[10]   Rejuvenation of aged progenitor cells by exposure to a young systemic environment [J].
Conboy, IM ;
Conboy, MJ ;
Wagers, AJ ;
Girma, ER ;
Weissman, IL ;
Rando, TA .
NATURE, 2005, 433 (7027) :760-764