Identification and characterisation of primary microRNAs from apple (Malus domestica cv. Royal Gala) expressed sequence tags

被引:58
作者
Gleave, Andrew P. [1 ]
Ampomah-Dwamena, Charles [1 ]
Berthold, Susann [1 ]
Dejnoprat, Supinya [1 ]
Karunairetnam, Sakuntala [1 ]
Nain, Bhawana [1 ]
Wang, Yen-Yi [1 ]
Crowhurst, Ross N. [1 ]
MacDiarmid, Robin M. [1 ]
机构
[1] HortRes Mt Albert, Auckland 1142, New Zealand
关键词
Malus domestica cv; Royal Gala; microRNA; expressed sequence tag;
D O I
10.1007/s11295-007-0113-1
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Microribonucleic acids (miRNAs) are small, non-coding RNAs that play important regulatory roles by down-regulating target transcripts in a sequence-specific manner. The miRBase Registry (Release 8.2) lists 732 miRNAs from flowering plant species, with the majority identified from Arabidopsis, rice and poplar where genome sequence is available. In the absence of genomic sequence and on the basis that sequences of many miRNAs are conserved amongst divergent plant species, we analysed approximately 120,000 Malus domestica cv. Royal Gala expressed sequence tags (ESTs) and identified ten distinct sequences that could be classified into seven conserved plant miRNA families (miR156, miR159, miR162, miR167, miR172, miR393 and miR398). Secondary structure predictions showed these sequences have the characteristic fold-back structures of precursor miRNAs, and northern analysis validated the presence of these miRNA families within Royal Gala tissues. A number of the miRNAs were expressed constitutively in all tissues tested (miR159, miR162 and miR172), while others showed more restricted patterns of expression, being expressed primarily in leaf (miR398), expressed in leaf and floral bud tissue but down-regulated during fruit development (miR156 and miR167) or expressed in fungal pathogen-infected leaf tissue (miR393). Potential targets for six of the miRNA families were identified from the EST dataset and completely sequenced complementary deoxyribonucleic acids. In general, these targets encode proteins shown to be the targets of corresponding miRNAs in other plant species. Demonstrating cleavage of a number of the putative target transcripts within the region of miRNA/messenger RNA complementarity provided further evidence of the functionality of the identified Royal Gala miRNAs.
引用
收藏
页码:343 / 358
页数:16
相关论文
共 54 条
[1]   Modulation of floral development by a gibberellin-regulated microRNA [J].
Achard, P ;
Herr, A ;
Baulcombe, DC ;
Harberd, NP .
DEVELOPMENT, 2004, 131 (14) :3357-3365
[2]   Computational prediction of miRNAs in Arabidopsis thaliana [J].
Adai, A ;
Johnson, C ;
Mlotshwa, S ;
Archer-Evans, S ;
Manocha, V ;
Vance, V ;
Sundaresan, V .
GENOME RESEARCH, 2005, 15 (01) :78-91
[3]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[4]   A uniform system for microRNA annotation [J].
Ambros, V ;
Bartel, B ;
Bartel, DP ;
Burge, CB ;
Carrington, JC ;
Chen, XM ;
Dreyfuss, G ;
Eddy, SR ;
Griffiths-Jones, S ;
Marshall, M ;
Matzke, M ;
Ruvkun, G ;
Tuschl, T .
RNA, 2003, 9 (03) :277-279
[5]   Cloning and characterization of micro-RNAs from moss [J].
Arazi, T ;
Talmor-Neiman, M ;
Stav, R ;
Riese, M ;
Huijser, P ;
Baulcombe, DC .
PLANT JOURNAL, 2005, 43 (06) :837-848
[6]   Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes [J].
Aukerman, MJ ;
Sakai, H .
PLANT CELL, 2003, 15 (11) :2730-2741
[7]   Antiquity of microRNAs and their targets in land plants [J].
Axtell, MJ ;
Bartel, DP .
PLANT CELL, 2005, 17 (06) :1658-1673
[8]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[9]   Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits rnicroRNAs and short interfering RNAs [J].
Baumberger, N ;
Baulcombe, DC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (33) :11928-11933
[10]   Detection of 91 potential in plant conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes [J].
Bonnet, E ;
Wuyts, J ;
Rouzé, P ;
Van de Peer, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (31) :11511-11516