The adapter protein GRB10 is an endogenous negative regulator of insulin-like growth factor signaling

被引:60
作者
Dufresne, AM
Smith, RJ
机构
[1] Brown Univ, Rhode Isl Hosp, Hallet Ctr Diabet & Endocriol, Sch Med, Providence, RI 02903 USA
[2] Brown Univ, Rhode Isl Hosp, Sch Med, Div Endocrinol, Providence, RI 02903 USA
关键词
D O I
10.1210/en.2005-0150
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The growth factor IGF-I is critical for normal human somatic growth and development. Growth factor receptor-bound protein (Grb) 10 is a protein that interacts with the IGF-I receptor and may thus regulate IGF-I-stimulated growth. However, the role of endogenous Grb10 in regulating IGF-I action is not known. The objective of this study was to determine the function of endogenous Grb10 in IGF signaling responses. Using small interfering RNA, we demonstrate that knockdown of Grb10 enhances IGF-I-mediated phosphorylation of insulin receptor substrate proteins, Akt/protein kinase B, and ERK1/2 and leads to a corresponding increase in DNA synthesis. Although IGF-I receptor autophosphorylation normally correlates with receptor signaling, we demonstrate a decrease in IGF-I-stimulated receptor phosphorylation in Grb10 knockdown cells. Pretreatment of cells with the protein-tyrosine phosphatase inhibitor pervanadate partially reverses this effect of Grb10 knockdown on receptor phosphorylation, indicating that endogenous Grb10 may block phosphatase access to the activated IGF-I receptor. Marked small interfering RNA knockdown of Grb10 does not result in increased or decreased expression of the related proteins Grb7 or Grb14. As further evidence for Grb10 functional specificity, the recently identified Grb10 interacting GYF proteins are shown to interact specifically with Grb10 and not with Grb7 or Grb14, using yeast two-hybrid assays. We conclude that Grb10 functions as a specific endogenous suppressor of IGF-I-stimulated cell signaling and DNA synthesis. Modulation of the Grb10-IGF-I receptor pathway may represent a mechanism that regulates IGF-I-responsive cell and tissue growth.
引用
收藏
页码:4399 / 4409
页数:11
相关论文
共 41 条
[1]   IGF-I receptor mutations resulting in intrauterine and postnatal growth retardation [J].
Abuzzahab, MJ ;
Schneider, A ;
Goddard, A ;
Grigorescu, F ;
Lautier, C ;
Keller, E ;
Kiess, W ;
Klammt, J ;
Kratzsch, J ;
Osgood, D ;
Pfäffle, R ;
Raile, K ;
Seidel, B ;
Smith, RJ ;
Chernausek, SD ;
Frank, GR ;
Kaplowitz, PB ;
Pescovitz, OH ;
Smith, EP .
NEW ENGLAND JOURNAL OF MEDICINE, 2003, 349 (23) :2211-2222
[2]   Mechanism of activation of protein kinase B by insulin and IGF-1 [J].
Alessi, DR ;
Andjelkovic, M ;
Caudwell, B ;
Cron, P ;
Morrice, N ;
Cohen, P ;
Hemmings, BA .
EMBO JOURNAL, 1996, 15 (23) :6541-6551
[3]   The contradictions of the insulin-like growth factor 1 receptor [J].
Baserga, R .
ONCOGENE, 2000, 19 (49) :5574-5581
[4]   Regulation of Akt/PKB Ser473 phosphorylation [J].
Bayascas, JR ;
Alessi, DR .
MOLECULAR CELL, 2005, 18 (02) :143-145
[5]   Inhibition of insulin receptor catalytic activity by the molecular adapter Grb14 [J].
Béréziat, V ;
Kasus-Jacobi, A ;
Perdereau, D ;
Cariou, B ;
Girard, J ;
Burnol, AF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (07) :4845-4852
[6]   Regulation of insulin-like growth factor type I (IGF-I) receptor kinase activity by protein tyrosine phosphatase 1B (PTP-1B) and enhanced IGF-I-mediated suppression of apoptosis and motility in PTP-1B-deficient fibroblasts [J].
Buckley, DA ;
Cheng, A ;
Kiely, PA ;
Tremblay, ML ;
O'Connor, R .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (07) :1998-2010
[7]   Minireview:: Tissue-specific versus generalized gene targeting of the igf1 and igf1r genes and their roles in insulin-like growth factor physiology [J].
Butler, AA ;
LeRoith, D .
ENDOCRINOLOGY, 2001, 142 (05) :1685-1688
[8]   Disruption of the imprinted Grb10 gene leads to disproportionate overgrowth by an Igf2-independent mechanism [J].
Charalambous, M ;
Smith, FM ;
Bennett, WR ;
Crew, TE ;
Mackenzie, F ;
Ward, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (14) :8292-8297
[9]   Improved glucose homeostasis and enhanced insulin signalling in Grb14-deficient mice [J].
Cooney, GJ ;
Lyons, RJ ;
Crew, AJ ;
Jensen, TE ;
Molero, JC ;
Mitchell, CJ ;
Biden, TJ ;
Ormandy, CJ ;
James, DE ;
Daly, RJ .
EMBO JOURNAL, 2004, 23 (03) :582-593
[10]   Growth factor receptor-binding protein 10 (Grb10) as a partner of phosphatidylinositol 3-kinase in metabolic insulin action [J].
Deng, YP ;
Bhattacharya, S ;
Swamy, OR ;
Tandon, RC ;
Wang, Y ;
Janda, R ;
Riedel, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (41) :39311-39322