Superconductivity in alkali-doped fullerides

被引:16
作者
Gunnarsson, O [1 ]
Han, JE
Koch, E
Crespi, VH
机构
[1] Max Planck Inst Festkorperforsch, D-70506 Stuttgart, Germany
[2] Penn State Univ, Dept Phys, Buffalo, NY 14260 USA
[3] SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA
[4] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
来源
SUPERCONDUCTIVITY IN COMPLEX SYSTEMS | 2005年 / 114卷
关键词
alkali-doped fullerides; retardation effects; local pairing;
D O I
10.1007/b101017
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Alkali-doped fullerides differ in important respects from conventional superconductors. In the latter omega(ph) << W, where omega(ph) and W are the phononic and electronic energy scales, respectively. Retardation effects are therefore believed to reduce drastically the effects of the Coulomb repulsion, allowing the phonom induced attraction to drive superconductivity. For the alkali-doped fullerides, on the other hand, omega(ph) similar to W. We discuss retardation effects extensively, and argue that these effects should not drastically reduce the Coulomb repulsion, raising questions about how superconductivity is possible. It is then important to treat the Coulomb repulsion and the electron-phonon interaction on an equal footing, rather than treating the Coulomb repulsion as a small empirical parameter mu*, as is done for conventional superconductors. For this reason we use the dynamical mean-field theory. We find that the interplay between the electron-electron and electron-phonon interactions is crucial, leading to a so-called local pairing, where the electrons tend to pair on the molecules. This results from the important phonons being intramolecular Jahn-Teller phonons. This local pairing helps forming a coherent superconducting state and it makes the superconductivity quite resistant to the Coulomb repulsion. It also explains the strong doping dependence in these systems.
引用
收藏
页码:71 / 101
页数:31
相关论文
共 97 条
[51]  
KIRZHNITS DA, 1982, HIGH TEMPERATURE SUP
[52]   Screening, Coulomb pseudopotentials and superconductivity in alkali-doped fullerenes [J].
Koch, E ;
Gunnarsson, O ;
Martin, RM .
PHYSICAL REVIEW LETTERS, 1999, 83 (03) :620-623
[53]   Energy gap in superconducting fullerides: Optical and tunneling studies [J].
Koller, D ;
Martin, MC ;
Mihaly, L ;
Mihaly, G ;
Oszlanyi, G ;
Baumgartner, G ;
Forro, L .
PHYSICAL REVIEW LETTERS, 1996, 77 (19) :4082-4085
[54]   SUPERCONDUCTIVITY AT 8.4-K IN CALCIUM-DOPED C-60 [J].
KORTAN, AR ;
KOPYLOV, N ;
GLARUM, S ;
GYORGY, EM ;
RAMIREZ, AP ;
FLEMING, RM ;
THIEL, FA ;
HADDON, RC .
NATURE, 1992, 355 (6360) :529-532
[55]   Superconductivity in LixCsC60 fullerides [J].
Kosaka, M ;
Tanigaki, K ;
Prassides, K ;
Margadonna, S ;
Lappas, A ;
Brown, CM ;
Fitch, AN .
PHYSICAL REVIEW B, 1999, 59 (10) :R6628-R6630
[56]   SOLID C-60 - A NEW FORM OF CARBON [J].
KRATSCHMER, W ;
LAMB, LD ;
FOSTIROPOULOS, K ;
HUFFMAN, DR .
NATURE, 1990, 347 (6291) :354-358
[57]   C-60 - BUCKMINSTERFULLERENE [J].
KROTO, HW ;
HEATH, JR ;
OBRIEN, SC ;
CURL, RF ;
SMALLEY, RE .
NATURE, 1985, 318 (6042) :162-163
[58]   JAHN-TELLER EFFECT FOR THE NEGATIVELY CHARGED C60 MOLECULE - ANALOGY WITH THE SILICON VACANCY [J].
LANNOO, M ;
BARAFF, GA ;
SCHLUTER, M ;
TOMANEK, D .
PHYSICAL REVIEW B, 1991, 44 (21) :12106-12108
[59]   BAND-GAP, EXCITONS, AND COULOMB INTERACTION IN SOLID C-60 [J].
LOF, RW ;
VANVEENENDAAL, MA ;
KOOPMANS, B ;
JONKMAN, HT ;
SAWATZKY, GA .
PHYSICAL REVIEW LETTERS, 1992, 68 (26) :3924-3927
[60]   ELECTRONIC LOCALIZATION IN RB4C60 FROM BULK MAGNETIC MEASUREMENTS [J].
LUKYANCHUK, I ;
KIROVA, N ;
RACHDI, F ;
GOZE, C ;
MOLINIE, P ;
MEHRING, M .
PHYSICAL REVIEW B, 1995, 51 (06) :3978-3980