A functional single-molecule binding assay via force spectroscopy

被引:90
作者
Cao, Yi [1 ]
Balamurali, M. M. [1 ]
Sharma, Deepak [1 ]
Li, Hongbin [1 ]
机构
[1] Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z1, Canada
关键词
atomic force microscopy; protein-ligand binding; protein-protein interaction;
D O I
10.1073/pnas.0705367104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Protein-ligand interactions, including protein-protein interactions, are ubiquitously essential in biological processes and also have important applications in biotechnology. A wide range of methodologies have been developed for quantitative analysis of protein-ligand interactions. However, most of them do not report direct functional/structural consequence of ligand binding. Instead they only detect the change of physical properties, such as fluorescence and refractive index, because of the colocalization of protein and ligand, and are susceptible to false positives. Thus, important information about the functional state of protein-ligand complexes cannot be obtained directly. Here we report a functional single-molecule binding assay that uses force spectroscopy to directly probe the functional consequence of ligand binding and report the functional state of protein-ligand complexes. As a proof of principle, we used protein G and the Fc fragment of IgG as a model system in this study. Binding of Fc to protein G does not induce major structural changes in protein G but results in significant enhancement of its mechanical stability. Using mechanical stability of protein G as an intrinsic functional reporter, we directly distinguished and quantified Fc-bound and Fc-free forms of protein G on a single-molecule basis and accurately determined their dissociation constant. This single-molecule functional binding assay is label-free, nearly background-free, and can detect functional heterogeneity, if any, among protein-ligand interactions. This methodology opens up avenues for studying protein-ligand interactions in a functional context, and we anticipate that it will find broad application in diverse protein-ligand systems.
引用
收藏
页码:15677 / 15681
页数:5
相关论文
共 37 条
[1]   Ligand binding modulates the mechanical stability of dihydrofolate reductase [J].
Ainavarapu, RK ;
Li, LY ;
Badilla, CL ;
Fernandez, JM .
BIOPHYSICAL JOURNAL, 2005, 89 (05) :3337-3344
[2]  
AKERSTROM B, 1985, J IMMUNOL, V135, P2589
[3]  
AKERSTROM B, 1986, J BIOL CHEM, V261, P240
[4]   Small-molecule inhibitors of protein-protein interactions: Progressing towards the dream [J].
Arkin, MR ;
Wells, JA .
NATURE REVIEWS DRUG DISCOVERY, 2004, 3 (04) :301-317
[5]   Nonmechanical protein can have significant mechanical stability [J].
Cao, Y ;
Lam, C ;
Wang, MJ ;
Li, HB .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (04) :642-645
[6]   Polyprotein of GB1 is an ideal artificial elastomeric protein [J].
Cao, Yi ;
Li, Hongbin .
NATURE MATERIALS, 2007, 6 (02) :109-114
[7]   Mechanical design of proteins-studied by single-molecule force spectroscopy and protein engineering [J].
Carrion-Vazquez, M ;
Oberhauser, AF ;
Fisher, TE ;
Marszalek, PE ;
Li, HB ;
Fernandez, JM .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2000, 74 (1-2) :63-91
[8]   Allosteric mechanisms of signal transduction [J].
Changeux, JP ;
Edelstein, SJ .
SCIENCE, 2005, 308 (5727) :1424-1428
[9]   Label-free screening of bio-molecular interactions [J].
Cooper, MA .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2003, 377 (05) :834-842
[10]   ADHESION FORCES BETWEEN INDIVIDUAL LIGAND-RECEPTOR PAIRS [J].
FLORIN, EL ;
MOY, VT ;
GAUB, HE .
SCIENCE, 1994, 264 (5157) :415-417