Effects of Gallium Doping in Garnet-Type Li7La3Zr2O12 Solid Electrolytes

被引:131
作者
Jalem, Randy [1 ,2 ]
Rushton, M. J. D. [4 ]
Manalastas, William, Jr. [5 ]
Nakayama, Masanobu [1 ,2 ,6 ]
Kasuga, Toshihiro [3 ]
Kilner, John A. [4 ,5 ]
Grimes, Robin W. [4 ]
机构
[1] Kyoto Univ, Unit Elements Strategy Initiat Catalysts & Batter, Saikyo Ku, Kyoto 6158520, Japan
[2] Nagoya Inst Technol, Dept Mat Sci & Engn, Nagoya, Aichi 4668555, Japan
[3] Nagoya Inst Technol, Dept Frontier Mat, Nagoya, Aichi 4668555, Japan
[4] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England
[5] CIC Energigune, Minano 01510, Alava, Spain
[6] Japan Sci & Technol Agcy, PRESTO, Kawaguchi, Saitama 3320012, Japan
关键词
LI-ION CONDUCTIVITY; TA-DOPED LI7LA3ZR2O12; TRANSPORT PROPERTIES; LITHIUM DISTRIBUTION; DYNAMICS; STATE; AL; SIMULATION; NB; GA;
D O I
10.1021/cm5045122
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Garnet-type Li7La3Zr2O12 (LLZrO) is a candidate Solid electrolyte material that is now being intensively optimized for application in commercially competitive solid state Li+ ion batteries. In this study we investigate, by force-field-based simulations, the effects of Ga3+ doping in LLZrO. We confirm the stabilizing effect of Ga3+ on the cubic phase. We also determine that Ga3+ addition does not lead to any appreciable structural distortion. Li site Connectivity is not significantly deteriorated by the Ga3+ addition (>90% connectivity retained up to x = 0.30 in Li7-3xGaxLa3Zr2O12). Interestingly, two compositional regions are predicted for bulk Li+ ion conductivity in the cubic phase: (i) a decreasing trend for 0 <= x <= 0.10 and (ii) a relatively flat trend for 0.10 < x <= 0.30. This conductivity behavior is explained by combining analyses using percolation theory, van Hove space time correlation, the radial distribution function, and trajectory density.
引用
收藏
页码:2821 / 2831
页数:11
相关论文
共 63 条
[31]   Optimizing Li+ conductivity in a garnet framework [J].
Li, Yutao ;
Han, Jian-Tao ;
Wang, Chang-An ;
Xie, Hui ;
Goodenough, John B. .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (30) :15357-15361
[32]   Ionic distribution and conductivity in lithium garnet Li7La3Zr2O12 [J].
Li, Yutao ;
Han, Jian-Tao ;
Wang, Chang-An ;
Vogel, Sven C. ;
Xie, Hui ;
Xu, Maowen ;
Goodenough, John B. .
JOURNAL OF POWER SOURCES, 2012, 209 :278-281
[33]   Preparation of new lithium ion composite electrolyte 3Li4SiS4-0.5La2S3 by mechanical milling [J].
Liu, Zhanqiang ;
Huang, Fuqiang ;
Yang, Hanhua ;
Wang, Yaoming ;
Sun, Junkang .
SOLID STATE SCIENCES, 2008, 10 (10) :1429-1433
[34]  
Longo R. C., 2014, SOLID STATE IONICS, V261, P100
[35]  
Ma C., 2014, ANGEW CHEM-GER EDIT, V126, P1, DOI [10.1002/ange.201408124, DOI 10.1002/ANGE.201408124]
[36]   Dispersion and polarizability and the van der Waals potential in the alkali halides [J].
Mayer, JE .
JOURNAL OF CHEMICAL PHYSICS, 1937, 1 (04) :270-279
[37]   Solid-State Electrolytes: Revealing the Mechanisms of Li-Ion Conduction in Tetragonal and Cubic LLZO by First-Principles Calculations [J].
Meier, Katharina ;
Laino, Teodoro ;
Curioni, Alessandro .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (13) :6668-6679
[38]   Effect of Rb and Ta Doping on the Ionic Conductivity and Stability of the Garnet Li7+2x-y(La3-xRbx)(Zr2-yTay)O12 (0 ≤ x ≤ 0.375, 0 ≤ y ≤ 1) Superionic Conductor: A First Principles Investigation [J].
Miara, Lincoln J. ;
Ong, Shyue Ping ;
Mo, Yifei ;
Richards, William Davidson ;
Park, Youngsin ;
Lee, Jae-Myung ;
Lee, Hyo Sug ;
Ceder, Gerbrand .
CHEMISTRY OF MATERIALS, 2013, 25 (15) :3048-3055
[39]   VESTA:: a three-dimensional visualization system for electronic and structural analysis [J].
Momma, Koichi ;
Izumi, Fujio .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2008, 41 :653-658
[40]   Fast lithium ion conduction in garnet-type Li7La3Zr2O12 [J].
Murugan, Ramaswamy ;
Thangadurai, Venkataraman ;
Weppner, Werner .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (41) :7778-7781