Material analysis and characterization on zone refined and zone leveled vertical zone melt GaAs for radiation spectrometers

被引:2
作者
McGregor, DS
Antolak, AJ
Cross, ES
Fang, ZQ
Goorsky, MS
Henry, RL
James, RB
Look, DC
Mier, MG
Morse, DH
Nordquist, PER
Olsen, R
Schieber, M
Schlesinger, TE
Soria, E
Toney, JE
VanScyoc, J
Yoon, H
机构
[1] CARNEGIE MELLON UNIV,DEPT ELECT & COMP ENGN,PITTSBURGH,PA 15213
[2] UNIV CALIF LOS ANGELES,DEPT MAT SCI & ENGN,LOS ANGELES,CA 90024
[3] USN,RES LAB,WASHINGTON,DC 20375
[4] SOLID STATE ELECT DIRECTORATE,WRIGHT PATTERSON AFB,OH 45433
关键词
D O I
10.1016/S0168-9002(96)00337-3
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
GaAs is a wide band gap (1.42 eV) semiconductor that has shown promise as a room temperature operated gamma-ray detector. A practical gamma-ray detector would be large in volume, hence the resistivity of the material must be high to ensure large depletion volumes and low leakage currents. Commercially available semi-insulating (SI) bulk GaAs is compensated by a balance between native defect deep donors (EL2) and residual dopant impurities. The high concentrations of electrically active deep and shallow levels are believed to contribute to electric field distortions observed in gamma-ray detectors fabricated from SI bulk GaAs. Hence, the controlled reduction of native defects and contaminant impurities may yield improved bulk GaAs for gamma-ray detectors. Custom grown vertical zone melt (VZM) bulk GaAs is presently under investigation as an alternative material for room temperature operated gamma-ray detectors. The VZM technique allows for zone refinement (ZR) and zone leveling (ZL) of the GaAs ingots. Custom growth of the material allows for controlled changes in the bulk crystal, including deliberate reductions in EL2 and impurity concentrations. Comparisons are made to commercial vertical gradient freeze (VGF) and liquid encapsulated Czochralski (LEG) bulk GaAs.
引用
收藏
页码:84 / 87
页数:4
相关论文
共 22 条
[1]  
BARRAFF GA, 1992, DEEP CTR SEMICONDUCT, P547
[2]  
BEAUMONT, 1993, NUCL PHYS B, V32, P296
[3]  
BERWICK K, 1993, I PHYS C PRO, V135, P305
[4]   FULL-WAFER MAPPING OF TOTAL AND IONIZED EL2 CONCENTRATION IN SEMI-INSULATING GAAS USING INFRARED-ABSORPTION [J].
BRIERLEY, SK ;
LEHR, DS .
APPLIED PHYSICS LETTERS, 1989, 55 (23) :2426-2428
[5]   COMPARISON OF DEEP CENTERS IN SEMIINSULATING LIQUID-ENCAPSULATED CZOCHRALSKI AND VERTICAL-GRADIENT FREEZE GAAS [J].
FANG, ZQ ;
LOOK, DC .
JOURNAL OF APPLIED PHYSICS, 1991, 69 (12) :8177-8182
[6]   A NOVEL APPLICATION OF THE VERTICAL GRADIENT FREEZE METHOD TO THE GROWTH OF HIGH-QUALITY III-V CRYSTALS [J].
GAULT, WA ;
MONBERG, EM ;
CLEMANS, JE .
JOURNAL OF CRYSTAL GROWTH, 1986, 74 (03) :491-506
[7]   DIFFUSE-X-RAY SCATTERING FROM MISFIT DISLOCATIONS AT SEMICONDUCTOR HETEROINTERFACES [J].
GOORSKY, MS ;
MESHKINPOUR, M ;
STREIT, DC ;
BLOCK, TR .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1995, 28 (4A) :A92-A96
[8]   GROWTH OF (100)GAAS BY VERTICAL ZONE-MELTING [J].
HENRY, RL ;
NORDQUIST, PER ;
GORMAN, RJ ;
QADRI, SB .
JOURNAL OF CRYSTAL GROWTH, 1991, 109 (1-4) :228-233
[9]   STOICHIOMETRY-CONTROLLED COMPENSATION IN LIQUID ENCAPSULATED CZOCHRALSKI GAAS [J].
HOLMES, DE ;
CHEN, RT ;
ELLIOTT, KR ;
KIRKPATRICK, CG .
APPLIED PHYSICS LETTERS, 1982, 40 (01) :46-48
[10]   CALCULATION OF THE ELECTRIC-FIELD IN GAAS PARTICLE DETECTORS [J].
KUBICKI, T ;
LUBELSMEYER, K ;
ORTMANNS, J ;
PANDOULAS, D ;
SYBEN, O ;
TOPOROWSKY, M ;
XIAO, WJ .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1994, 345 (03) :468-473