Hybridization of electronic states in quantum dots through photon emission

被引:108
作者
Karrai, K
Warburton, RJ [1 ]
Schulhauser, C
Högele, A
Urbaszek, B
McGhee, EJ
Govorov, AO
Garcia, JM
Gerardot, BD
Petroff, PM
机构
[1] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Univ Munich, Ctr NanoSci, D-80539 Munich, Germany
[3] Univ Munich, Sekt Phys, D-80539 Munich, Germany
[4] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA
[5] Russian Acad Sci, Inst Semicond Phys, Siberian Branch, Novosibirsk 630090, Russia
[6] PTM, CSIC, CNM, Inst Microelect Madrid, Madrid 28760, Spain
[7] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1038/nature02109
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The self-assembly of semiconductor quantum dots has opened up new opportunities in photonics. Quantum dots are usually described as 'artificial atoms', because electron and hole confinement gives rise to discrete energy levels. This picture can be justified from the shell structure observed as a quantum dot is filled either with excitons(1) (bound electron - hole pairs) or with electrons(2). The discrete energy levels have been most spectacularly exploited in single photon sources that use a single quantum dot as emitter(3-6). At low temperatures, the artificial atom picture is strengthened by the long coherence times of excitons in quantum dots(7-9), motivating the application of quantum dots in quantum optics and quantum information processing. In this context, excitons in quantum dots have already been manipulated coherently(10-12). We show here that quantum dots can also possess electronic states that go far beyond the artificial atom model. These states are a coherent hybridization of localized quantum dot states and extended continuum states: they have no analogue in atomic physics. The states are generated by the emission of a photon from a quantum dot. We show how a new version of the Anderson model that describes interactions between localized and extended states can account for the observed hybridization.
引用
收藏
页码:135 / 138
页数:4
相关论文
共 22 条
[1]   Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots -: art. no. 041308 [J].
Bayer, M ;
Forchel, A .
PHYSICAL REVIEW B, 2002, 65 (04) :1-4
[2]   Hidden symmetries in the energy levels of excitonic 'artificial atoms' [J].
Bayer, M ;
Stern, O ;
Hawrylak, P ;
Fafard, S ;
Forchel, A .
NATURE, 2000, 405 (6789) :923-926
[3]   Coherent optical control of the quantum state of a single quantum dot [J].
Bonadeo, NH ;
Erland, J ;
Gammon, D ;
Park, D ;
Katzer, DS ;
Steel, DG .
SCIENCE, 1998, 282 (5393) :1473-1476
[4]   Ultralong dephasing time in InGaAs quantum dots [J].
Borri, P ;
Langbein, W ;
Schneider, S ;
Woggon, U ;
Sellin, RL ;
Ouyang, D ;
Bimberg, D .
PHYSICAL REVIEW LETTERS, 2001, 87 (15) :157401-157401
[5]   SOME MAGNETIC PROPERTIES OF METALS .1. GENERAL INTRODUCTION, AND PROPERTIES OF LARGE SYSTEMS OF ELECTRONS [J].
DINGLE, RB .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1952, 211 (1107) :500-516
[6]   Note to the Quantification of the harmonic Oscillator in a Magnetic Field [J].
Fock, V. .
ZEITSCHRIFT FUR PHYSIK, 1928, 47 (5-6) :446-448
[7]   Homogeneous linewidths in the optical spectrum of a single gallium arsenide quantum dot [J].
Gammon, D ;
Snow, ES ;
Shanabrook, BV ;
Katzer, DS ;
Park, D .
SCIENCE, 1996, 273 (5271) :87-90
[8]  
Hewson A, 1993, KONDO PROBLEM HEAVY
[9]   Exciton Rabi oscillation in a single quantum dot [J].
Kamada, H ;
Gotoh, H ;
Temmyo, J ;
Takagahara, T ;
Ando, H .
PHYSICAL REVIEW LETTERS, 2001, 87 (24) :246401-1
[10]   Photoluminescence up-conversion in single self-assembled InAs/GaAs quantum dots -: art. no. 207401 [J].
Kammerer, C ;
Cassabois, G ;
Voisin, C ;
Delalande, C ;
Roussignol, P ;
Gérard, JM .
PHYSICAL REVIEW LETTERS, 2001, 87 (20) :207401-1