Signal modeling of high-purity Ge detectors with a small read-out electrode and application to neutrinoless double beta decay search in Ge-76

被引:38
作者
Agostini, M. [1 ,2 ,3 ,4 ]
Ur, C. A. [2 ]
Budjas, D. [3 ]
Bellotti, E. [5 ]
Brugnera, R. [2 ,4 ]
Cattadori, C. M. [5 ]
di Vacri, A. [6 ]
Garfagnini, A. [2 ,4 ]
Pandola, L. [6 ]
Schoenert, S. [1 ,3 ]
机构
[1] Tech Univ Munich, Phys Dept E15, Munich, Germany
[2] Ist Nazl Fis Nucl, Padua, Italy
[3] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany
[4] Univ Padua, Dipartimento Fis, Padua, Italy
[5] INFN Milano Bicocca, Milan, Italy
[6] INFN, Lab Nazl Gran Sasso, Assergi, Italy
来源
JOURNAL OF INSTRUMENTATION | 2011年 / 6卷
关键词
Detector modelling and simulations I (interaction of radiation with matter; interaction of photons with matter; interaction of hadrons with matter; etc); Particle identification methods; Gamma detectors (scintillators; CZT; HPG; HgI etc);
D O I
10.1088/1748-0221/6/03/P03005
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The GERDA experiment searches for the neutrinoless double beta decay of Ge-76 using high-purity germanium detectors enriched in Ge-76. The analysis of the signal time structure provides a powerful tool to identify neutrinoless double beta decay events and to discriminate them from gamma-ray induced backgrounds. Enhanced pulse shape discrimination capabilities of Broad Energy Germanium detectors with a small read-out electrode have been recently reported. This paper describes the full simulation of the response of such a detector, including the Monte Carlo modeling of radiation interaction and subsequent signal shape calculation. A pulse shape discrimination method based on the ratio between the maximum current signal amplitude and the event energy applied to the simulated data shows quantitative agreement with the experimental data acquired with calibration sources. The simulation has been used to study the survival probabilities of the decays which occur inside the detector volume and are difficult to assess experimentally. Such internal decay events are produced by the cosmogenic radio-isotopes Ge-68 and Co-60 and the neutrinoless double beta decay of Ge-76. Fixing the experimental acceptance of the double escape peak of the 2.614 MeV photon to 90%, the estimated survival probabilities at Q(beta beta) = 2.039 MeV are (86 +/- 3)% for Ge-76 neutrinoless double beta decays, (4.5 +/- 0.3)% for the Ge-68 daughter Ga-68, and (0.9(-0.2)(+0.40))% for Co-60 decays.
引用
收藏
页数:28
相关论文
共 29 条
[1]   The Majorana neutrinoless double-beta decay experiment [J].
Aalseth, CE ;
Anderson, D ;
Arthur, R ;
Avignone, FT ;
Baktash, C ;
Ball, T ;
Barabash, AS ;
Brodzinski, RL ;
Brudanin, VB ;
Bugg, W ;
Champagne, AE ;
Chan, YD ;
Cianciolo, TV ;
Collar, JI ;
Creswick, RW ;
Doe, PJ ;
Dunham, G ;
Easterday, S ;
Efremenko, YV ;
Egorov, VG ;
Ejiri, H ;
Elliott, SR ;
Ely, J ;
Fallon, P ;
Farach, HA ;
Gaitskell, RJ ;
Gehman, V ;
Grzywacz, R ;
Hazma, R ;
Hime, H ;
Hossbach, T ;
Jordan, D ;
Kazkaz, K ;
Kephart, J ;
King, GS ;
Kochetov, OI ;
Konovalov, SI ;
Kouzes, RT ;
Lesko, KT ;
Macchiavelli, AO ;
Miley, HS ;
Mills, GB ;
Nomachi, M ;
Palms, JM ;
Pitts, WK ;
Poon, AWP ;
Radford, DC ;
Reeves, JH ;
Robertson, RGH ;
Rohm, RM .
PHYSICS OF ATOMIC NUCLEI, 2004, 67 (11) :2002-2010
[2]   Recent results of the IGEX 76Ge double-beta decay experiment [J].
Aalseth, CE ;
Avignone, FT ;
Brodzinski, RL ;
Cebrian, S ;
Gonzáles, D ;
García, E ;
Hensley, WK ;
Irastorza, IG ;
Kirpichnikov, IV ;
Klimenko, AA ;
Miley, HS ;
Morales, A ;
Morales, J ;
de Solórzano, AR ;
Osetrov, SB ;
Pogosov, VS ;
Puimedón, J ;
Reeves, JH ;
Sarsa, ML ;
Scopel, S ;
Smolnikov, AA ;
Starostin, AS ;
Tamanyan, AG ;
Vasenko, AA ;
Vasiliev, SI ;
Villar, JA .
PHYSICS OF ATOMIC NUCLEI, 2000, 63 (07) :1225-1228
[3]  
AALSETH CE, ARXIV10024703 COGENT
[4]  
Abt I., GERDA GERMANIUM DETE
[5]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[6]  
AGOSTINI M, JINST UNPUB
[7]  
AGOSTINI M, 2009, THESIS U PADOVA PADO
[8]  
AGOSTINI M, GELATIO GEN FR UNPUB
[9]  
AGOSTINI M, 2010, NUCL PHYS B IN PRESS
[10]   Geant4 developments and applications [J].
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Dubois, PA ;
Asai, M ;
Barrand, G ;
Capra, R ;
Chauvie, S ;
Chytracek, R ;
Cirrone, GAP ;
Cooperman, G ;
Cosmo, G ;
Cuttone, G ;
Daquino, GG ;
Donszelmann, M ;
Dressel, M ;
Folger, G ;
Foppiano, F ;
Generowicz, J ;
Grichine, V ;
Guatelli, S ;
Gumplinger, P ;
Heikkinen, A ;
Hrivnacova, I ;
Howard, A ;
Incerti, S ;
Ivanchenko, V ;
Johnson, T ;
Jones, F ;
Koi, T ;
Kokoulin, R ;
Kossov, M ;
Kurashige, H ;
Lara, V ;
Larsson, S ;
Lei, F ;
Link, O ;
Longo, F ;
Maire, M ;
Mantero, A ;
Mascialino, B ;
McLaren, I ;
Lorenzo, PM ;
Minamimoto, K ;
Murakami, K ;
Nieminen, P ;
Pandola, L ;
Parlati, S ;
Peralta, L .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2006, 53 (01) :270-278