Theory and practice of chaotic cryptography

被引:115
作者
Amigo, J. M.
Kocarev, L.
Szczepanski, J.
机构
[1] Univ Miguel Hernandez, Ctr Investigac Operat, Elche 03202, Spain
[2] Univ Calif San Diego, Inst Nonlinear Sci, La Jolla, CA 92093 USA
[3] Polish Acad Sci, Inst Fundamental Technol Res, PL-00049 Warsaw, Poland
关键词
D O I
10.1016/j.physleta.2007.02.021
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter we address some basic questions about chaotic cryptography, not least the very definition of chaos in discrete systems. We propose a conceptual framework and illustrate it with different examples from private and public key cryptography. We elaborate also on possible limits of chaotic cryptography. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:211 / 216
页数:6
相关论文
共 25 条
[21]   Chaos synchronization for a class of discrete dynamical systems on the N-dimensional torus [J].
Rosier, L ;
Millérioux, G ;
Bloch, G .
SYSTEMS & CONTROL LETTERS, 2006, 55 (03) :223-231
[22]   Use of chaotic dynamical systems in cryptography [J].
Schmitz, R .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2001, 338 (04) :429-441
[23]   Cryptographically secure substitutions based on the approximation of mixing maps [J].
Szczepanski, J ;
Amigó, JM ;
Michalek, T ;
Kocarev, L .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2005, 52 (02) :443-453
[24]   Using distributed nonlinear dynamics for public key encryption [J].
Tenny, R ;
Tsimring, LS ;
Larson, L ;
Abarbanel, HDI .
PHYSICAL REVIEW LETTERS, 2003, 90 (04) :4
[25]   Hash function based on chaotic tent maps [J].
Yi, X .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2005, 52 (06) :354-357