APPLICATION OF COMPETITIVE HOPFIELD NEURAL NETWORK TO BRAIN-COMPUTER INTERFACE SYSTEMS

被引:53
作者
Hsu, Wei-Yen [1 ]
机构
[1] Taipei Med Univ, Grad Inst Biomed Informat, Taipei 110, Taiwan
关键词
Brain-computer interface (BCI); electroencephalogram (EEG); motor imagery (MI); wavelet transform; fractal dimension (FD); competitive Hopfield neural network (CHNN); PARTICLE SWARM OPTIMIZATION; ACTIVE SEGMENT SELECTION; EEG-BASED DIAGNOSIS; SEIZURE DETECTION; FRACTAL FEATURES; CLASSIFICATION; SYNCHRONIZATION; PREDICTION; FUZZY; METHODOLOGY;
D O I
10.1142/S0129065712002979
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an unsupervised recognition system for single-trial classification of motor imagery (MI) electroencephalogram (EEG) data in this study. Competitive Hopfield neural network (CHNN) clustering is used for the discrimination of left and right MI EEG data posterior to selecting active segment and extracting fractal features in multi-scale. First, we use continuous wavelet transform (CWT) and Student's two-sample t-statistics to select the active segment in the time-frequency domain. The multiresolution fractal features are then extracted from wavelet data by means of modified fractal dimension. At last, CHNN clustering is adopted to recognize extracted features. Due to the characteristic of nonsupervision, it is proper for CHNN to classify non-stationary EEG signals. The results indicate that CHNN achieves 81.9% in average classification accuracy in comparison with self-organizing map (SOM) and several popular supervised classifiers on six subjects from two data sets.
引用
收藏
页码:51 / 62
页数:12
相关论文
共 66 条
[21]   Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection [J].
Ghosh-Dastidar, Samanwoy ;
Adeli, Hojat ;
Dadmehr, Nahid .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2007, 54 (09) :1545-1551
[22]  
Ghosh-Dastidar S, 2007, INTEGR COMPUT-AID E, V14, P187
[23]   A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection [J].
Ghosh-Dastidar, Samanwoy ;
Adeli, Hojjat .
NEURAL NETWORKS, 2009, 22 (10) :1419-1431
[24]   SPIKING NEURAL NETWORKS [J].
Ghosh-Dastidar, Samanwoy ;
Adeli, Hojjat .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2009, 19 (04) :295-308
[25]   CONTROL OF SYNCHRONIZATION OF BRAIN DYNAMICS LEADS TO CONTROL OF EPILEPTIC SEIZURES IN RODENTS [J].
Good, Levi B. ;
Sabesan, Shivkumar ;
Marsh, Steven T. ;
Tsakalis, Kostas ;
Treiman, David ;
Iasemidis, Leon .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2009, 19 (03) :173-196
[26]   A comparison of quantitative EEG features for neonatal seizure detection [J].
Greene, B. R. ;
Faul, S. ;
Marnane, W. P. ;
Lightbody, G. ;
Korotchikova, I. ;
Boylan, G. B. .
CLINICAL NEUROPHYSIOLOGY, 2008, 119 (06) :1248-1261
[27]   Rapid prototyping of an EEG-based brain-computer interface (BCI) [J].
Guger, C ;
Schlögl, A ;
Neuper, C ;
Walterspacher, D ;
Strein, T ;
Pfurtscheller, G .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2001, 9 (01) :49-58
[28]  
Gunasekaran S, 2004, Int J Neural Syst, V14, P139, DOI 10.1142/S0129065704001929
[29]   AN INTELLIGENT LOAD SHEDDING SCHEME USING NEURAL NETWORKS AND NEURO-FUZZY [J].
Haidar, Ahmed M. A. ;
Mohamed, Azah ;
Al-Dabbagh, Majid ;
Hussain, Aini ;
Masoum, Mohammad .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2009, 19 (06) :473-479
[30]   THE MEANING AND USE OF THE AREA UNDER A RECEIVER OPERATING CHARACTERISTIC (ROC) CURVE [J].
HANLEY, JA ;
MCNEIL, BJ .
RADIOLOGY, 1982, 143 (01) :29-36