Ultrafast Electrochemical Lithiation of Individual Si Nanowire Anodes

被引:361
作者
Liu, Xiao Hua [1 ]
Zhang, Li Qiang [2 ,4 ]
Zhong, Li [2 ]
Liu, Yang [1 ]
Zheng, He [2 ,5 ,6 ]
Wang, Jiang Wei [2 ]
Cho, Jeong-Hyun [3 ]
Dayeh, Shadi A. [3 ]
Picraux, S. Tom [3 ]
Sullivan, John P. [1 ]
Mao, Scott X. [2 ]
Ye, Zhi Zhen [4 ]
Huang, Jian Yu [1 ]
机构
[1] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA
[2] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA
[3] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA
[4] Zhejiang Univ, State Key Lab Silicon Mat, Dept Mat Sci & Engn, Hangzhou 310027, Peoples R China
[5] Wuhan Univ, Sch Phys & Technol, Ctr Elect Microscopy, Wuhan 430072, Peoples R China
[6] Wuhan Univ, MOE Key Lab Artificial Micro & Nanostruct, Wuhan 430072, Peoples R China
基金
美国国家科学基金会;
关键词
Silicon nanowire; lithium ion battery; fast lithiation; carbon coating; doping; LITHIUM SECONDARY BATTERIES; SOLID-STATE AMORPHIZATION; HIGH-CAPACITY ANODE; SILICON NANOWIRES; ION BATTERIES; LI; PERFORMANCE; STORAGE; ELECTRODES; FILM;
D O I
10.1021/nl200412p
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Using advanced in situ transmission electron microscopy, we show that the addition of a carbon coating combined with heavy doping leads to record-high charging rates in silicon nanowires. The carbon coating and phosphorus doping each resulted in a 2 to 3 orders of magnitude increase in electrical conductivity of the nanowires that, in turn, resulted in a 1 order of magnitude increase in charging rate. In addition, electrochemical solid-state amorphization (ESA) and inverse ESA were directly observed and characterized during a two-step phase transformation process during lithiation: crystalline silicon (Si) transforming to amorphous lithium-silicon (Li(x)Si) which transforms to crystalline Li(15)Si(4) (capacity 3579 mAh.g(-1)). The ultrafast charging rate is attributed to the nanoscale diffusion length and the improved electron and ion transport. These results provide important insight in how to use Si as a high energy density and high power density anode in lithium ion batteries for electrical vehicle and other electronic power source applications.
引用
收藏
页码:2251 / 2258
页数:8
相关论文
共 23 条
[11]   Effect of Phosphorus Doping into the Silicon as an Anode material for Lithium Secondary Batteries [J].
Kong, Myung-Ho ;
Byun, Dong Jin ;
Lee, Joong Kee .
ADVANCED MATERIALS AND PROCESSING, 2007, 26-28 :333-+
[12]   Electrochemical characteristics of phosphorus doped silicon and graphite composite for the anode materials of lithium secondary batteries [J].
Kong, Myung-ho ;
Noh, Jae-hyun ;
Byun, Dong-jin ;
Lee, Joong-kee .
JOURNAL OF ELECTROCERAMICS, 2009, 23 (2-4) :376-381
[13]   An in situ X-ray diffraction study of the reaction of Li with crystalline Si [J].
Li, Jing ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (03) :A156-A161
[14]   Electrochemically-driven solid-state amorphization in lithium-metal anodes [J].
Limthongkul, P ;
Jang, YI ;
Dudney, NJ ;
Chiang, YM .
JOURNAL OF POWER SOURCES, 2003, 119 :604-609
[15]   Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage [J].
Limthongkul, P ;
Jang, YI ;
Dudney, NJ ;
Chiang, YM .
ACTA MATERIALIA, 2003, 51 (04) :1103-1113
[16]  
Magasinski A, 2010, NAT MATER, V9, P353, DOI [10.1038/NMAT2725, 10.1038/nmat2725]
[17]   Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries [J].
Ng, See-How ;
Wang, Jiazhao ;
Wexler, David ;
Konstantinov, Konstantin ;
Guo, Zai-Ping ;
Liu, Hua-Kun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (41) :6896-6899
[18]   Reversible cycling of crystalline silicon powder [J].
Obrovac, M. N. ;
Krause, L. J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (02) :A103-A108
[19]   Structural changes in silicon anodes during lithium insertion/extraction [J].
Obrovac, MN ;
Christensen, L .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (05) :A93-A96
[20]  
Ravet N, 2003, NAT MATER, V2, P702, DOI 10.1038/nmat1009a