Hierarchical CuO/ZnO "corn-like" architecture for photocatalytic hydrogen generation

被引:142
作者
Liu, Zhaoyang [1 ]
Bai, Hongwei [1 ]
Xu, Shiping [1 ]
Sun, Darren Delai [1 ]
机构
[1] Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore 639798, Singapore
关键词
CuO; Hierarchical; Hydrogen generation; Photocatalytic; ZnO; VISIBLE-LIGHT-DRIVEN; SOLID-SOLUTION; WATER; ZNO; TIO2; ENERGY; EFFICIENT; FABRICATION; CU; HETEROJUNCTION;
D O I
10.1016/j.ijhydene.2011.07.137
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Novel high efficient photocatalyst is the key for photocatalytic hydrogen generation from water splitting. In this study, a novel hierarchical CuO/ZnO "corn-like" architecture was designed and synthesized via a combination of hydrothermal and photodeposition method. The as-prepared nanostructured materials was shown to effectively generate hydrogen in the mixture of methanol and water (v/v = 1:10). This is because the hierarchical CuO/ZnO "corn-like" architecture: 1) greatly enhances the light utilization rate due to its special architecture, 2) enlarges the specific surface area, providing more reaction sites and promoting mass transfer, 3) promotes the photogenerated electrons transfer from ZnO to CuO, achieving the anti-recombination effect of electrons and holes, and 4) avoids the photocorrosion of ZnO to improve the stability of ZnO as a catalyst during water splitting. Moreover, the novel hierarchical CuO/ZnO "corn-like" architecture is easily recovered for reuse. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:13473 / 13480
页数:8
相关论文
共 46 条
[21]   Fabrication of ZnO nanorods and nanotubes in aqueous solutions [J].
Li, QC ;
Kumar, V ;
Li, Y ;
Zhang, HT ;
Marks, TJ ;
Chang, RPH .
CHEMISTRY OF MATERIALS, 2005, 17 (05) :1001-1006
[22]   An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method [J].
Liu, Zhaoyang ;
Sun, Darren Delai ;
Guo, Peng ;
Leckie, James O. .
NANO LETTERS, 2007, 7 (04) :1081-1085
[23]   GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting [J].
Maeda, K ;
Takata, T ;
Hara, M ;
Saito, N ;
Inoue, Y ;
Kobayashi, H ;
Domen, K .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (23) :8286-8287
[24]   Photocatalyst releasing hydrogen from water - Enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight. [J].
Maeda, K ;
Teramura, K ;
Lu, DL ;
Takata, T ;
Saito, N ;
Inoue, Y ;
Domen, K .
NATURE, 2006, 440 (7082) :295-295
[25]   Solid Solution of GaN and ZnO as a Stable Photocatalyst for Overall Water Splitting under Visible Light [J].
Maeda, Kazuhiko ;
Domen, Kazunari .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :612-623
[26]   p-type Cu-Ti-O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation [J].
Mor, Gopal K. ;
Varghese, Oomman K. ;
Wilke, Rudeger H. T. ;
Sharma, Sanjeev ;
Shankar, Karthik ;
Latempa, Thomas J. ;
Choi, Kyoung-Shin ;
Grimes, Craig A. .
NANO LETTERS, 2008, 8 (07) :1906-1911
[27]   Composition-Tuned ZnO-CdSSe Core-Shell Nanowire Arrays [J].
Myung, Yoon ;
Jang, Dong Myung ;
Sung, Tae Kwang ;
Sohn, Yong Jei ;
Jung, Gyeong Bok ;
Cho, Yong Jae ;
Kim, Han Sung ;
Park, Jeunghee .
ACS NANO, 2010, 4 (07) :3789-3800
[28]   Photocatalytic hydrogen evolution from CdS-ZnO-CdO systems under visible light irradiation: Effect of thermal treatment and presence of Pt and Ru cocatalysts [J].
Navarro, R. M. ;
del Valle, F. ;
Fierro, J. L. G. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (16) :4265-4273
[29]   Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process [J].
Pal, U ;
Santiago, P .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (32) :15317-15321
[30]   Electricity without carbon [J].
Schiermeier, Quirin ;
Tollefson, Jeff ;
Scully, Tony ;
Witze, Alexandra ;
Morton, Oliver .
NATURE, 2008, 454 (7206) :816-823