On the Vacuum Ultraviolet Radiation of a Miniaturized Non-thermal Atmospheric Pressure Plasma Jet

被引:26
作者
Foest, Ruediger [1 ]
Bindemann, Thomas [1 ]
Brandenburg, Ronny [1 ]
Kindel, Eckhard [1 ]
Lange, Hartmut [1 ]
Stieber, Manfred [1 ]
Weltmann, Klaus-Dieter [1 ]
机构
[1] Inst Low Temp Plasma Phys INP, D-17489 Greifswald, Germany
关键词
atmospheric pressure glow discharges (APGD); microdischarges; non-thermal plasma; plasma jet; plasma treatment; surface modification; UV spectroscopy;
D O I
10.1002/ppap.200731207
中图分类号
O59 [应用物理学];
学科分类号
摘要
The suitability of a miniaturized non-thermal APPJ operating with Ar at ambient atmosphere for applications related to surface treatment is demonstrated. The VUV emission is measured and the dependence of selected line intensities over the radius of the plasma jet is presented. The Ar discharge is characterized by an intense VUV radiation, attributed to N, H, and O atomic lines along with an Ar-2* excimer continuum, which is drastically reduced after adding up to 5% N-2 to the Ar working gas. Two absorption dips are found in the VUV spectrum. The surface energy enhancement of substrates at temperatures as low as 35 degrees C along with chemical reactivity originating from abundant NO and OH free radicals and UV/VUV radiation in the plasma give rise to numerous applications, e. g., in the medical and biological field.
引用
收藏
页码:S460 / S464
页数:5
相关论文
共 19 条
[1]   Thin film processing by radio frequency hollow cathodes [J].
Bardos, L ;
Barankova, H ;
Berg, S .
SURFACE & COATINGS TECHNOLOGY, 1997, 97 (1-3) :723-728
[2]   Antimicrobial treatment of heat sensitive materials by means of atmospheric pressure rf-driven plasma jet [J].
Brandenburg, R. ;
Ehlbeck, J. ;
Stieber, M. ;
von Woedtke, T. ;
Zeymer, J. ;
Schlueter, O. ;
Weltmann, K. -D. .
CONTRIBUTIONS TO PLASMA PHYSICS, 2007, 47 (1-2) :72-79
[3]   RF capillary jet - a tool for localized surface treatment [J].
Foest, R. ;
Kindel, E. ;
Lange, H. ;
Ohl, A. ;
Stieber, M. ;
Weltmann, K. -D. .
CONTRIBUTIONS TO PLASMA PHYSICS, 2007, 47 (1-2) :119-128
[4]   Non-thermal atmospheric pressure discharges for surface modification [J].
Foest, R ;
Kindel, E ;
Ohl, A ;
Stieber, M ;
Weltmann, KD .
PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 :B525-B536
[5]   Microplasmas, an emerging field of low-temperature plasma science and technology [J].
Foest, R ;
Schmidt, M ;
Becker, K .
INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2006, 248 (03) :87-102
[6]   Non-thermal atmospheric pressure discharges [J].
Fridman, A ;
Chirokov, A ;
Gutsol, A .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (02) :R1-R24
[7]   Barrier-torch discharge plasma source for surface treatment technology at atmospheric pressure [J].
Hubicka, Z ;
Cada, M ;
Sícha, M ;
Churpita, A ;
Pokorny, P ;
Soukup, L ;
Jastrabík, L .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2002, 11 (02) :195-202
[8]   Dielectric-barrier discharges: Their history, discharge physics, and industrial applications [J].
Kogelschatz, U .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2003, 23 (01) :1-46
[9]   DEVELOPMENT AND APPLICATION OF A MICROBEAM PLASMA GENERATOR [J].
KOINUMA, H ;
OHKUBO, H ;
HASHIMOTO, T ;
INOMATA, K ;
SHIRAISHI, T ;
MIYANAGA, A ;
HAYASHI, S .
APPLIED PHYSICS LETTERS, 1992, 60 (07) :816-817
[10]  
Lange H., 1997, P 12 INT C GAS DISCH, V2, P467