The dual-tree complex wavelet transform

被引:1764
作者
Selesnick, IW
Baraniuk, RG
Kingsbury, NG
机构
[1] Rice Univ, Houston, TX 77251 USA
[2] Univ Cambridge, Cambridge CB2 1TN, England
关键词
D O I
10.1109/MSP.2005.1550194
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
引用
收藏
页码:123 / 151
页数:29
相关论文
共 121 条
[11]   A nonlinear image representation in wavelet domain using complex signals with single quadrant spectrum [J].
Ates, HF ;
Orchard, MT .
CONFERENCE RECORD OF THE THIRTY-SEVENTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 2003, :1966-1970
[12]   A FILTER BANK FOR THE DIRECTIONAL DECOMPOSITION OF IMAGES - THEORY AND DESIGN [J].
BAMBERGER, RH ;
SMITH, MJT .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1992, 40 (04) :882-893
[13]   COMPLEX, LINEAR-PHASE FILTERS FOR EFFICIENT IMAGE-CODING [J].
BELZER, B ;
LINA, JM ;
VILLASENOR, J .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (10) :2425-2427
[14]  
BLANCFERAUD L, 2005, P IEEE INT C AC SPEE, V2, P621
[15]   DISCRETE, SPATIOTEMPORAL, WAVELET MULTIRESOLUTION ANALYSIS METHOD FOR COMPUTING OPTICAL-FLOW [J].
BURNS, TJ ;
ROGERS, SK ;
RUCK, DW ;
OXLEY, ME .
OPTICAL ENGINEERING, 1994, 33 (07) :2236-2247
[16]   Curvelets, multiresolution representation, and scaling laws [J].
Candes, EJ ;
Donoho, DL .
WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VIII PTS 1 AND 2, 2000, 4119 :1-12
[17]  
CAUSEVIC E, 2005, P IEEE INT C AC SPEE, V5, P393
[18]  
CHAN W, 2005, IN PRESS WAVELET APP, V11
[19]  
Chan WL, 2004, IEEE IMAGE PROC, P3057
[20]  
Chan WL, 2004, 2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PROCEEDINGS, P996