The dual-tree complex wavelet transform

被引:1764
作者
Selesnick, IW
Baraniuk, RG
Kingsbury, NG
机构
[1] Rice Univ, Houston, TX 77251 USA
[2] Univ Cambridge, Cambridge CB2 1TN, England
关键词
D O I
10.1109/MSP.2005.1550194
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
引用
收藏
页码:123 / 151
页数:29
相关论文
共 121 条
[41]   Theory and lattice structure of complex paraunitary filterbanks with filters of (Hermitian-)symmetry/antisymmetry properties [J].
Gao, XQ ;
Nguyen, TQ ;
Strang, G .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (05) :1028-1043
[42]   Phaselets of framelets [J].
Gopinath, RA .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (05) :1794-1806
[43]   The phaselet transform - An integral redundancy nearly shift-invariant wavelet transform [J].
Gopinath, RA .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2003, 51 (07) :1792-1805
[44]   DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE [J].
GROSSMANN, A ;
MORLET, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1984, 15 (04) :723-736
[45]   Image texture description using complex wavelet transform [J].
Hatipoglu, S ;
Mitra, SK ;
Kingsbury, N .
2000 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS, 2000, :530-533
[46]   Phase-based multidimensional volume registration [J].
Hemmendorff, M ;
Andersson, MT ;
Kronander, T ;
Knutsson, H .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2002, 21 (12) :1536-1543
[47]  
Hill PR, 2000, 2000 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, P901, DOI 10.1109/ICIP.2000.899602
[48]  
HONG PS, 2002, P IEEE INT C AC SPEE, V2, P1165
[49]  
Jalobeanu A, 2001, IEEE IMAGE PROC, P201, DOI 10.1109/ICIP.2001.958988
[50]  
KAWABATA H, 2004, P IEEE INT C AC SPEE, V2, P937