Thermal dissipation and variability in electrical breakdown of carbon nanotube devices

被引:87
作者
Liao, Albert [1 ,2 ]
Alizadegan, Rouholla [3 ]
Ong, Zhun-Yong [1 ,4 ]
Dutta, Sumit [1 ,2 ]
Xiong, Feng [1 ,2 ]
Hsia, K. Jimmy [1 ,3 ]
Pop, Eric [1 ,2 ,5 ]
机构
[1] Univ Illinois, Micro & Nanotechnol Lab, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[5] Univ Illinois, Beckman Inst, Urbana, IL 61801 USA
关键词
MOLECULAR-DYNAMICS; HEAT-CONDUCTION; RELAXATION; PHONONS; ENERGY; FIELD;
D O I
10.1103/PhysRevB.82.205406
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study high-field electrical breakdown and heat dissipation from carbon nanotube (CNT) devices on SiO2 substrates. The thermal "footprint" of a CNT caused by van der Waals interactions with the substrate is revealed through molecular dynamics simulations. Experiments and modeling find the CNT-substrate thermal coupling scales proportionally with CNT diameter and inversely with SiO2 surface roughness (similar to d/Delta). Comparison of diffuse mismatch modeling and data reveals the upper limit of thermal coupling similar to 0.4 W K-1 m(-1) per unit CNT length at room temperature, (130 MW K-1 m(-2) per unit area), and similar to 0.7 W K-1 m(-1) at 600 degrees C for the largest diameter (similar to 3.2 nm) CNTs. We also find semiconducting CNTs can break down prematurely and display more variability due to dynamic shifts in threshold voltage, which metallic CNTs are immune to; this poses a fundamental challenge for selective electrical breakdowns in CNT electronics.
引用
收藏
页数:9
相关论文
共 52 条
[1]   EMPIRICAL POTENTIAL FOR HYDROCARBONS FOR USE IN SIMULATING THE CHEMICAL VAPOR-DEPOSITION OF DIAMOND FILMS [J].
BRENNER, DW .
PHYSICAL REVIEW B, 1990, 42 (15) :9458-9471
[2]   Binding energy of parallel carbon nanotubes [J].
Chen, B ;
Gao, M ;
Zuo, JM ;
Qu, S ;
Liu, B ;
Huang, Y .
APPLIED PHYSICS LETTERS, 2003, 83 (17) :3570-3571
[3]   Electric-field-dependent charge-carrier velocity in semiconducting carbon nanotubes [J].
Chen, YF ;
Fuhrer, MS .
PHYSICAL REVIEW LETTERS, 2005, 95 (23)
[4]   Thermal contact resistance between graphene and silicon dioxide [J].
Chen, Z. ;
Jang, W. ;
Bao, W. ;
Lau, C. N. ;
Dames, C. .
APPLIED PHYSICS LETTERS, 2009, 95 (16)
[5]   Ballistic phonon thermal transport in multiwalled carbon nanotubes -: art. no. 226101 [J].
Chiu, HY ;
Deshpande, VV ;
Postma, HWC ;
Lau, CN ;
Mikó, C ;
Forró, L ;
Bockrath, M .
PHYSICAL REVIEW LETTERS, 2005, 95 (22)
[6]   Engineering carbon nanotubes and nanotube circuits using electrical breakdown [J].
Collins, PC ;
Arnold, MS ;
Avouris, P .
SCIENCE, 2001, 292 (5517) :706-709
[7]   Current saturation and electrical breakdown in multiwalled carbon nanotubes [J].
Collins, PG ;
Hersam, M ;
Arnold, M ;
Martel, R ;
Avouris, P .
PHYSICAL REVIEW LETTERS, 2001, 86 (14) :3128-3131
[8]   Spatially Resolved Temperature Measurements of Electrically Heated Carbon Nanotubes [J].
Deshpande, Vikram V. ;
Hsieh, Scott ;
Bushmaker, Adam W. ;
Bockrath, Marc ;
Cronin, Stephen B. .
PHYSICAL REVIEW LETTERS, 2009, 102 (10)
[9]   Extension of the diffuse mismatch model for thermal boundary conductance between isotropic and anisotropic materials [J].
Duda, John C. ;
Smoyer, Justin L. ;
Norris, Pamela M. ;
Hopkins, Patrick E. .
APPLIED PHYSICS LETTERS, 2009, 95 (03)
[10]   Reduction of hysteresis for carbon nanotube mobility measurements using pulsed characterization [J].
Estrada, David ;
Dutta, Sumit ;
Liao, Albert ;
Pop, Eric .
NANOTECHNOLOGY, 2010, 21 (08)