Reduction of hysteresis for carbon nanotube mobility measurements using pulsed characterization

被引:100
作者
Estrada, David [1 ]
Dutta, Sumit [1 ]
Liao, Albert [1 ]
Pop, Eric [1 ,2 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Micro & Nanotechnol Lab, Urbana, IL 61801 USA
[2] Univ Illinois, Beckman Inst, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
D O I
10.1088/0957-4484/21/8/085702
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We describe a pulsed measurement technique for suppressing hysteresis for carbon nanotube (CNT) device measurements in air, vacuum, and over a wide temperature range (80-453 K). Varying the gate pulse width and duty cycle probes the relaxation times associated with charge trapping near the CNT, found to be up to the 0.1-10 s range. Longer off times between voltage pulses enable consistent, hysteresis-free measurements of CNT mobility. A tunneling front model for charge trapping and relaxation is also described, suggesting trap depths up to 4-8 nm for CNTs on SiO2. Pulsed measurements will also be applicable for other nanoscale devices such as graphene, nanowires, or molecular electronics, and could enable probing trap relaxation times in a variety of material system interfaces.
引用
收藏
页数:7
相关论文
共 29 条
[1]   Orientation-dependent C60 electronic structures revealed by photoemission spectroscopy (vol 93, pg 197601, 2004) -: art. no. 099903 [J].
Brouet, V ;
Yang, WL ;
Zhou, XJ ;
Choi, HJ ;
Louie, SG ;
Cohen, ML ;
Goldoni, A ;
Parmigiani, F ;
Hussain, Z ;
Shen, ZX .
PHYSICAL REVIEW LETTERS, 2005, 95 (09)
[2]   Extraordinary mobility in semiconducting carbon nanotubes [J].
Durkop, T ;
Getty, SA ;
Cobas, E ;
Fuhrer, MS .
NANO LETTERS, 2004, 4 (01) :35-39
[3]   BALLISTIC ELECTRON-TRANSPORT IN THIN SILICON DIOXIDE FILMS [J].
FISCHETTI, MV ;
DIMARIA, DJ ;
DORI, L ;
BATEY, J ;
TIERNEY, E ;
STASIAK, J .
PHYSICAL REVIEW B, 1987, 35 (09) :4404-4415
[4]   High-mobility nanotube transistor memory [J].
Fuhrer, MS ;
Kim, BM ;
Durkop, T ;
Brintlinger, T .
NANO LETTERS, 2002, 2 (07) :755-759
[5]   Hysteresis suppression in self-assembled single-wall nanotube field effect transistors [J].
Hu, P. ;
Zhang, C. ;
Fasoli, A. ;
Scardaci, V. ;
Pisana, S. ;
Hasan, T. ;
Robertson, J. ;
Milne, W. I. ;
Ferrari, A. C. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (07) :2278-2282
[6]   Ballistic carbon nanotube field-effect transistors [J].
Javey, A ;
Guo, J ;
Wang, Q ;
Lundstrom, M ;
Dai, HJ .
NATURE, 2003, 424 (6949) :654-657
[7]   Quantitative analysis of hysteresis in carbon nanotube field-effect devices [J].
Kar, Swastik ;
Vijayaraghavan, Aravind ;
Soldano, Caterina ;
Talapatra, Saikat ;
Vajtai, Robert ;
Nalamasu, Omkaram ;
Ajayan, Pulickel M. .
APPLIED PHYSICS LETTERS, 2006, 89 (13)
[8]   Hysteresis caused by water molecules in carbon nanotube field-effect transistors [J].
Kim, W ;
Javey, A ;
Vermesh, O ;
Wang, O ;
Li, YM ;
Dai, HJ .
NANO LETTERS, 2003, 3 (02) :193-198
[9]   Origin of gate hysteresis in carbon nanotube field-effect transistors [J].
Lee, Joon Sung ;
Ryu, Sunmin ;
Yoo, Kwonjae ;
Choi, Insung S. ;
Yun, Wan Soo ;
Kim, Jinhee .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (34) :12504-12507
[10]   Electrical properties of 0.4 cm long single-walled carbon nanotubes [J].
Li, SD ;
Yu, Z ;
Rutherglen, C ;
Burke, PJ .
NANO LETTERS, 2004, 4 (10) :2003-2007