Nanofabrication and characterization of ZnO nanorod arrays and branched microrods by aqueous solution route and rapid thermal processing

被引:175
作者
Lupan, Oleg [1 ,2 ]
Chow, Lee [1 ]
Chai, Guangyu [3 ]
Roldan Cuenya, Beatriz [1 ]
Naitabdi, Ahmed [1 ]
Schulte, Alfons [1 ]
Heinrich, Helge [1 ,4 ,5 ]
机构
[1] Univ Cent Florida, Dept Phys, POB 162385, Orlando, FL 32816 USA
[2] Tech Univ Moldova, Dept Microelect & Semicond Devices, MD-2004 Kishinev, Moldova
[3] Apollo Technol Inc, Lake Mary, FL 32746 USA
[4] Univ Cent Florida, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA
[5] Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Orlando, FL 32816 USA
来源
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY | 2007年 / 145卷 / 1-3期
基金
美国国家科学基金会;
关键词
ZnO nanorod; branched microrods; nanofabrication; transferable nanoarchitectures;
D O I
10.1016/j.mseb.2007.10.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents an inexpensive and fast fabrication method for one-dimensional (1D) ZnO nanorod arrays and branched two-dimensional (2D), three-dimensional (3D) - nanoarchitectures. Our synthesis technique includes the use of an aqueous solution route and post-growth rapid thermal annealing. It permits rapid and controlled growth of ZnO nanorod arrays of 1D - rods, 2D - crosses, and 3D - tetrapods without the use of templates or seeds. The obtained ZnO nanorods are uniformly distributed on the surface of Si substrates and individual or branched nano/microrods can be easily transferred to other substrates. Process parameters such as concentration, temperature and time, type of substrate and the reactor design are critical for the formation of nanorod arrays with thin diameter and transferable nanoarchitectures. X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, transmission electron microscopy and Micro-Raman spectroscopy have been used to characterize the samples. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:57 / 66
页数:10
相关论文
共 53 条
[21]   Single nanowire lasers [J].
Johnson, JC ;
Yan, HQ ;
Schaller, RD ;
Haber, LH ;
Saykally, RJ ;
Yang, PD .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (46) :11387-11390
[22]   Simple solvothermal route to synthesize ZnO nanosheets, nanonails, and well-aligned nanorod arrays [J].
Kar, Soumitra ;
Dev, Apurba ;
Chaudhuri, Subhadra .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (36) :17848-17853
[23]   Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time [J].
Law, JBK ;
Thong, JTL .
APPLIED PHYSICS LETTERS, 2006, 88 (13)
[24]   Nanowire dye-sensitized solar cells [J].
Law, M ;
Greene, LE ;
Johnson, JC ;
Saykally, R ;
Yang, PD .
NATURE MATERIALS, 2005, 4 (06) :455-459
[25]   Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties [J].
Li, Y ;
Meng, GW ;
Zhang, LD ;
Phillipp, F .
APPLIED PHYSICS LETTERS, 2000, 76 (15) :2011-2013
[26]   Selective growth of ZnO nanostructures with coordination polymers [J].
Li, ZQ ;
Xiong, YJ ;
Xie, Y .
NANOTECHNOLOGY, 2005, 16 (10) :2303-2308
[27]   CORE ELECTRON-SPECTROSCOPY OF WATER SOLUTIONS [J].
LUNDHOLM, M ;
SIEGBAHN, H ;
HOLMBERG, S ;
ARBMAN, M .
JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 1986, 40 (02) :163-180
[28]  
LUPAN O, 2005, THESIS TECHNICAL U M
[29]  
LUPAN O, IN PRESS MICROELECTR, DOI DOI 10.1016/J.MEJO.2007.09.004
[30]   Density-controlled hydrothermal growth of well-aligned ZnO nanorod arrays [J].
Ma, Teng ;
Guo, Min ;
Zhang, Mei ;
Zhang, Yanjun ;
Wang, Xidong .
NANOTECHNOLOGY, 2007, 18 (03)