Three-dimensional nanoimprint mold fabrication by focused-ion-beam chemical vapor deposition

被引:38
作者
Morita, T
Watanabe, K
Kometani, R
Kanda, K
Haruyama, Y
Kaito, T
Fujita, JI
Ishida, M
Ochiai, Y
Tajima, T
Matsui, S
机构
[1] LASTI, Himeji Inst Technol, Grad Sch Sci, Ako, Hyogo 6781205, Japan
[2] Seiko Instruments Inc, Shizuoka 4101393, Japan
[3] NEC Fundamental Res Labs, Tsukuba, Ibaraki 3058051, Japan
[4] Crestec Co, Hachioji, Tokyo 1920045, Japan
[5] JST, CREST, Kawaguchi, Saitama 3320012, Japan
来源
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS | 2003年 / 42卷 / 6B期
关键词
focused-ion-beam (FIB); chemical vapor deposition (CVD); nanoimprint; mold; diamond-like carbon (DLC); electron beam (EB); hydrogen silsequioxane (HSQ); nanoimprint lithography (NIL);
D O I
10.1143/JJAP.42.3874
中图分类号
O59 [应用物理学];
学科分类号
摘要
Three-dimensional diamond-like carbon (DLC) mold fabricated by focused-ion-beam chemical vapor deposition (FIB-CVD) using a precursor of phenanthrene has been applied to a nanoimprint process. Various 3D nanostructure DLC molds have been delineated by FIB-CVD using a computer-controlled pattern generator which is a commercially available pattern generator for electron beam lithography. Then, the molds were imprinted into hydrogen silsequioxane (HSQ) as a material replicated at room temperature. It was confirmed that the 3D mold, after nanoimprint lithography (NIL), kept its original shape, and 3D mold structures were successfully imprinted into HSQ. These results reveal that the 3D mold fabricated by FIB-CVD can be applied to NIL.
引用
收藏
页码:3874 / 3876
页数:3
相关论文
共 7 条
[1]   Imprint lithography with 25-nanometer resolution [J].
Chou, SY ;
Krauss, PR ;
Renstrom, PJ .
SCIENCE, 1996, 272 (5258) :85-87
[2]   Sub-10 nm imprint lithography and applications [J].
Chou, SY ;
Krauss, PR ;
Zhang, W ;
Guo, LJ ;
Zhuang, L .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1997, 15 (06) :2897-2904
[3]  
CHOU Y, 1996, APPL PHYS LETT, V67, P3114
[4]   Observation and characteristics of mechanical vibration in three-dimensional nanostructures and pillars grown by focused ion beam chemical vapor deposition [J].
Fujita, J ;
Ishida, M ;
Sakamoto, T ;
Ochiai, Y ;
Kaito, T ;
Matsui, S .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2001, 19 (06) :2834-2837
[5]   Room temperature nanoimprint technology using hydrogen silsequioxane (HSQ) [J].
Igaku, Y ;
Matsui, S ;
Ishigaki, H ;
Fujita, J ;
Ishida, M ;
Ochiai, Y ;
Namatsu, H ;
Komuro, M ;
Hiroshima, H .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2002, 41 (6B) :4198-4202
[6]   Room temperature replication in spin on glass by nanoimprint technology [J].
Matsui, S ;
Igaku, Y ;
Ishigaki, H ;
Fujita, J ;
Ishida, M ;
Ochiai, Y ;
Komuro, M ;
Hiroshima, H .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2001, 19 (06) :2801-2805
[7]   Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition [J].
Matsui, S ;
Kaito, T ;
Fujita, J ;
Komuro, M ;
Kanda, K ;
Haruyama, Y .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2000, 18 (06) :3181-3184