Surface compression with geometric bandelets

被引:134
作者
Peyré, G [1 ]
Mallat, S [1 ]
机构
[1] Ecole Polytech, CMAP, F-91128 Palaiseau, France
来源
ACM TRANSACTIONS ON GRAPHICS | 2005年 / 24卷 / 03期
关键词
bandelets; discrete multiscale geometry; geometry image; normal map; compression;
D O I
10.1145/1073204.1073236
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper describes the construction of second generation bandelet bases and their application to 3D geometry compression. This new coding scheme is orthogonal and the corresponding basis functions are regular. In our method, surfaces are decomposed in a bandelet basis with a fast bandeletization algorithm that removes the geometric redundancy of orthogonal wavelet coefficients. The resulting transform coding scheme has an error decay that is asymptotically optimal for geometrically regular surfaces. We then use these bandelet bases to perform geometry image and normal map compression. Numerical tests show that for complex surfaces bandelets bring an improvement of 1.5dB to 2dB over state of the art compression schemes.
引用
收藏
页码:601 / 608
页数:8
相关论文
共 40 条
[1]   Surface approximation and geometric partitions [J].
Agarwal, PK ;
Suri, S .
SIAM JOURNAL ON COMPUTING, 1998, 27 (04) :1016-1035
[2]   Anisotropic polygonal remeshing [J].
Alliez, P ;
Cohen-Steiner, D ;
Devillers, O ;
Lévy, B ;
Desbrun, M .
ACM TRANSACTIONS ON GRAPHICS, 2003, 22 (03) :485-493
[3]  
ALLIEZ P, 2005, RECENT ADV COMPRESSI, P3
[4]  
[Anonymous], 1997, A Wavelet Tour of Signal Processing
[5]  
[Anonymous], WAVELETS OTHER BASES
[6]  
Biermann H, 2000, COMP GRAPH, P113, DOI 10.1145/344779.344841
[7]  
Candes E.J., 1999, Curvelets - a surprisingly effective nonadaptive representation for objects with edges
[8]   Metro:: Measuring error on simplified surfaces [J].
Cignoni, P ;
Rocchini, C ;
Scopigno, R .
COMPUTER GRAPHICS FORUM, 1998, 17 (02) :167-174
[9]  
Cohen A, 2002, TUTORIALS ON MULTIRESOLUTION IN GEOMETRIC MODELLING, P93
[10]   Variational shape approximation [J].
Cohen-Steiner, D ;
Alliez, P ;
Desbrun, M .
ACM TRANSACTIONS ON GRAPHICS, 2004, 23 (03) :905-914