Dirichlet integrals and Gaffney-Friedrichs inequalities in convex domains

被引:29
作者
Mitrea, M [1 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
基金
美国国家科学基金会;
关键词
D O I
10.1515/form.2001.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study geometrical conditions guaranteeing the validity of the classical Gaffney-Friedrichs estimate (1) parallel tou parallel to (1,2)(H)((Omega)) less than or equal to C(parallel to du parallel to (2)(L)((Omega))+parallel to deltau parallel to (2)(L)((Omega))+parallel tou parallel to (2)(L)((Omega))) granted that the differential form u has a vanishing tangential or normal component on partial derivative Omega. Our main result is that (1) holds provided Omega satisfies a suitable convexity assumption. In the Euclidean setting, a uniform exterior ball condition suffices. As applications, certain regularity results of PDE's and eigenvalue inequalities in non-smooth domains are presented.
引用
收藏
页码:531 / 567
页数:37
相关论文
共 24 条
[1]   L(P)-INTEGRABILITY OF THE 2ND-ORDER DERIVATIVES OF GREEN POTENTIALS IN CONVEX DOMAINS [J].
ADOLFSSON, V .
PACIFIC JOURNAL OF MATHEMATICS, 1993, 159 (02) :201-225
[2]   L2-INTEGRABILITY OF 2ND-ORDER DERIVATIVES FOR POISSON EQUATION IN NONSMOOTH DOMAINS [J].
ADOLFSSON, V .
MATHEMATICA SCANDINAVICA, 1992, 70 (01) :146-160
[3]   L(P)-INTEGRABILITY OF THE 2ND-ORDER DERIVATIVES FOR THE NEUMANN PROBLEM IN CONVEX DOMAINS [J].
ADOLFSSON, V ;
JERISON, D .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1994, 43 (04) :1123-1138
[4]  
[Anonymous], SC NORM SUPER PISA I
[5]   An inverse problem for scattering by a doubly periodic structure [J].
Bao, G ;
Zhou, ZF .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (10) :4089-4103
[6]  
Berline N., 1991, Heat Kernels and Dirac Operators
[7]  
Duvaut G., 1972, INEGALITES MECANIQUE
[8]   Boundary layers on Sobolev-Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains [J].
Fabes, E ;
Mendez, O ;
Mitrea, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 159 (02) :323-368
[9]   DIFFERENTIAL FORMS ON RIEMANNIAN MANIFOLDS [J].
FRIEDRICHS, KO .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1955, 8 (04) :551-590
[10]   POTENTIAL SPACE ESTIMATES FOR GREEN POTENTIALS IN CONVEX DOMAINS [J].
FROMM, SJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 119 (01) :225-233