An Exchange Intercalation Mechanism for the Formation of a Two-Dimensional Si Structure Underneath Graphene

被引:70
作者
Cui, Yi [1 ]
Gao, Junfeng [2 ]
Jin, Li [1 ]
Zhao, Jijun [2 ]
Tan, Dali [1 ]
Fu, Qiang [1 ]
Bao, Xinhe [1 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China
[2] Dalian Univ Technol, Minist Educ, Key Lab Mat Modificat Laser Ion & Elect Beams, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphene; photoemission electron microscopy (PEEM); low energy electron microscopy (LEEM); intercalation; silicon; Ru(0001); BIMETALLIC SURFACES; GROWTH; DEPOSITION; CLUSTERS;
D O I
10.1007/s12274-012-0215-4
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A two-dimensional (2D) Si film can form between a graphene overlayer and a Ru(0001) substrate through an intercalation process. At the graphene/2D-Si/Ru(0001) surface, the topmost graphene layer is decoupled from the Ru substrate and becomes quasi-freestanding. The interfacial Si layers show high stability due to the protection from the graphene cover. Surface science measurements indicate that the surface Si atoms can penetrate through the graphene lattice, and density functional theory calculations suggest a Si-C exchange mechanism facilitates the penetration of Si at mild temperatures. The new mechanism may be involved for other elements on graphene, if they can bond strongly with carbon. This finding opens a new route to form 2D interfacial layers between graphene and substrates.
引用
收藏
页码:352 / 360
页数:9
相关论文
共 49 条
[1]   From bilayer to monolayer growth: Temperature effects in the growth of Ru on Pt(111) [J].
Berko, A. ;
Bergbreiter, A. ;
Hoster, H. E. ;
Behm, R. J. .
SURFACE SCIENCE, 2009, 603 (16) :2556-2563
[2]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[3]   Impermeable atomic membranes from graphene sheets [J].
Bunch, J. Scott ;
Verbridge, Scott S. ;
Alden, Jonathan S. ;
van der Zande, Arend M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
NANO LETTERS, 2008, 8 (08) :2458-2462
[4]   Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium [J].
Cahangirov, S. ;
Topsakal, M. ;
Akturk, E. ;
Sahin, H. ;
Ciraci, S. .
PHYSICAL REVIEW LETTERS, 2009, 102 (23)
[5]   Monolayer bimetallic surfaces: Experimental and theoretical studies of trends in electronic and chemical properties [J].
Chen, Jingguang G. ;
Menning, Carl A. ;
Zellner, Michael B. .
SURFACE SCIENCE REPORTS, 2008, 63 (05) :201-254
[6]   Dynamic observation of layer-by-layer growth and removal of graphene on Ru(0001) [J].
Cui, Yi ;
Fu, Qiang ;
Bao, Xinhe .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (19) :5053-5057
[7]   Dynamic Characterization of Graphene Growth and Etching by Oxygen on Ru(0001) by Photoemission Electron Microscopy [J].
Cui, Yi ;
Fu, Qiang ;
Zhang, Hui ;
Tan, Dali ;
Bao, Xinhe .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (47) :20365-20370
[8]   Graphene-protected iron layer on Ni(111) [J].
Dedkov, Yu. S. ;
Fonin, M. ;
Ruediger, U. ;
Laubschat, C. .
APPLIED PHYSICS LETTERS, 2008, 93 (02)
[9]   Structural properties and site specific interactions of Pt with the graphene/Ru(0001) moire overlayer [J].
Donner, Kerstin ;
Jakob, Peter .
JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (16)
[10]   Formation of Carbon Clusters in the Initial Stage of Chemical Vapor Deposition Graphene Growth on Ni(111) Surface [J].
Gao, Junfeng ;
Yuan, Qinghong ;
Hu, Hong ;
Zhao, Jijun ;
Ding, Feng .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (36) :17695-17703