Kinetic theory of point vortices: Diffusion coefficient and systematic drift

被引:63
作者
Chavanis, PH
机构
[1] Univ Toulouse 3, Phys Quant Lab, F-31062 Toulouse, France
[2] Univ Calif Santa Barbara, Inst Theoret Phys, Santa Barbara, CA 93106 USA
来源
PHYSICAL REVIEW E | 2001年 / 64卷 / 02期
关键词
D O I
10.1103/PhysRevE.64.026309
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We develop a kinetic theory for point vortices in two-dimensional hydrodynamics. Using standard projection operator techniques, we derive a Fokker-Planck equation describing the relaxation of a "test" vortex in a bath of "field" vortices at statistical equilibrium. The relaxation is due to the combined effect of a diffusion and a drift. The drift is shown to be responsible for the organization of point vortices at negative temperatures. A description that goes beyond the thermal bath approximation is attempted. A new kinetic equation is obtained which respects all conservation laws of the point vortex system and satisfies a H theorem. Close to equilibrium, this equation reduces to the ordinary Fokker-Planck equation.
引用
收藏
页码:28 / 263092
页数:28
相关论文
共 36 条
[1]  
Binney J., 1987, GALACTIC DYNAMICS
[2]   Dynamical friction - I. General considerations: The coefficient of dynamical friction [J].
Chandrasekhar, S .
ASTROPHYSICAL JOURNAL, 1943, 97 (02) :255-262
[3]   Degenerate equilibrium states of collisionless stellar systems [J].
Chavanis, PH ;
Sommeria, J .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1998, 296 (03) :569-578
[4]   Statistics of velocity fluctuations arising from a random distribution of point vortices: The speed of fluctuations and the diffusion coefficient [J].
Chavanis, PH ;
Sire, C .
PHYSICAL REVIEW E, 2000, 62 (01) :490-506
[5]  
Chavanis PH, 1998, MON NOT R ASTRON SOC, V300, P981, DOI 10.1046/j.1365-8711.1998.01867.x
[6]   Thermodynamical approach for small-scale parametrization in 2D turbulence [J].
Chavanis, PH ;
Sommeria, J .
PHYSICAL REVIEW LETTERS, 1997, 78 (17) :3302-3305
[7]   From Jupiter's great red spot to the structure of galaxies: Statistical mechanics of two-dimensional vortices and stellar systems [J].
Chavanis, PH .
NONLINEAR DYNAMICS AND CHAOS IN ASTROPHYSICS: FESTSCHRIFT IN HONOR OF GEORGE CONTOPOULOS, 1998, 867 :120-140
[8]   Quasilinear theory of the 2D Euler equation [J].
Chavanis, PH .
PHYSICAL REVIEW LETTERS, 2000, 84 (24) :5512-5515
[9]   Systematic drift experienced by a point vortex in two-dimensional turbulence [J].
Chavanis, PH .
PHYSICAL REVIEW E, 1998, 58 (02) :R1199-R1202
[10]   Statistical mechanics of two-dimensional vortices and collisionless stellar systems [J].
Chavanis, PH ;
Sommeria, J ;
Robert, R .
ASTROPHYSICAL JOURNAL, 1996, 471 (01) :385-399