Evaluating drug efficacy and toxicology in three dimensions: Using synthetic extracellular matrices in drug discovery

被引:122
作者
Prestwich, Glenn D. [1 ,2 ,3 ]
机构
[1] Univ Utah, Dept Med Chem, Salt Lake City, UT 84108 USA
[2] Univ Utah, Ctr Therapeut Biomat, Salt Lake City, UT 84108 USA
[3] Glycosan BioSyst Inc, Salt Lake City, UT 84108 USA
关键词
D O I
10.1021/ar7000827
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The acceptance of the new paradigm of 3-D cell culture is currently constrained by the lack of a biocompatible material in the marketplace that offers ease of use, experimental flexibility, and a seamless transition from in vitro to in vivo applications. I describe the development of a covalently cross-linked mimic of the extracellular matrix (sECM), now commercially available, for 3-D culture of cells in vitro and for translational use in vivo. These bio-inspired, biomimetic materials can be used "as is" in drug discovery, toxicology, cell banking, and, ultimately, medicine. For cell therapy and the development of clinical combination products, the sECM biomaterials must be highly reproducible, manufacturable, approvable, and affordable. To obtain integrated, functional, multicellular systems that recapitulate tissues and organs, the needs of the true end users, physicians and patients, must dictate the key design criteria. In chemical terms, the sECM consists of chemically-modified hyaluronan (HA), other glycosaminoglycans (GAGS), and ECM polypeptides containing thiol residues that are cross-linked using biocompatible polyvalent electrophiles. For example, co-cross-linking the semisynthetic thiol-modified HA-like GAG with thiol-modified gelatin produces Extracel as a hydrogel. This hydrogel may be formed in situ in the presence of cells or tissues to provide an injectable cell-delivery vehicle. Alternately, an Extracel hyrogel can be lyophilized to create a macroporous scaffold, which can then be employed for 3-D cell culture. In this Account, we describe four applications of sECMs that are relevant to the evaluation of drug efficacy and drug toxicity. First, the uses of sECMS to promote both in vitro and in vivo growth of healthy cellularized 3-D tissues are summarized. Primary or cell-line-derived cells, including fibroblasts, chondrocytes, hepatocytes, adult and embryonic stem cells, and endothelial and epithelial cells have been used. Second, primary hepatocytes retain their biochemical phenotypes and achieve greater longevity in 3-D culture in Extracel. This constitutes a new 3-D method for rapid evaluation of hepatotoxicity in vitro. Third, cancer cell lines are readily grown in 3-D culture in Extracel, offering a method for rapid evaluation of new anticancer agents in a more physiological ex vivo tumor model. This system has been used to evaluate signal transduction modifiers obtained from our research on lipid signaling. Fourth, a new "tumor engineering" xenograft model uses orthotopic injection of Extracel-containing tumor cells in nude mice. This approach allows production of patient-specific mice using primary human tumor samples and offers a superior metastatic cancer model. Future applications of the injectable cell delivery and 3-D cell culture methods include chemoattractant and angiogenesis assays, high-content automated screening of chemical libraries, pharmacogenomic and toxicogenomic studies with cultured organoids, and personalized treatment models. In summary, the sECM technology offers a versatile "translational bridge" from in vitro to in vivo to facilitate drug discovery in both academic and pharmaceutical laboratories.
引用
收藏
页码:139 / 148
页数:10
相关论文
共 63 条
[1]   Structural polarity and functional bile canaliculi in rat hepatocyte spheroids [J].
Abu-Absi, SF ;
Friend, JR ;
Hansen, LK ;
Hu, WS .
EXPERIMENTAL CELL RESEARCH, 2002, 274 (01) :56-67
[2]   Photo- and electropatterning of hydrogel-encapsulated living cell arrays [J].
Albrecht, DR ;
Tsang, VL ;
Sah, RL ;
Bhatia, SN .
LAB ON A CHIP, 2005, 5 (01) :111-118
[3]   Advances in bioartificial liver devices [J].
Allen, JW ;
Hassanein, T ;
Bhatia, SN .
HEPATOLOGY, 2001, 34 (03) :447-455
[4]   Review. Hyaluronan: A powerful tissue engineering tool [J].
Allison, David D. ;
Grande-Allen, K. Jane .
TISSUE ENGINEERING, 2006, 12 (08) :2131-2140
[5]   Engineering cellular microenvironments to cell-based drug testing improve [J].
Bhadriraju, K ;
Chen, CS .
DRUG DISCOVERY TODAY, 2002, 7 (11) :612-620
[6]   Modelling molecular mechanisms of breast cancer and invasion: lessons from the normal gland [J].
Bissell, M. J. .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2007, 35 :18-22
[7]   Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor [J].
Cai, SS ;
Liu, YC ;
Shu, XZ ;
Prestwich, GD .
BIOMATERIALS, 2005, 26 (30) :6054-6067
[8]   Taking cell-matrix adhesions to the third dimension [J].
Cukierman, E ;
Pankov, R ;
Stevens, DR ;
Yamada, KM .
SCIENCE, 2001, 294 (5547) :1708-1712
[9]   New technologies and screening strategies for hepatotoxicity: Use of in vitro models [J].
Dambach, DM ;
Andrews, BA ;
Moulin, F .
TOXICOLOGIC PATHOLOGY, 2005, 33 (01) :17-26
[10]   Modelling glandular epithelial cancers in three-dimensional cultures [J].
Debnath, J ;
Brugge, JS .
NATURE REVIEWS CANCER, 2005, 5 (09) :675-688