Adsorption of CO, CO2 and CH4 on Cu-BTC and MIL-101 metal organic frameworks: Effect of open metal sites and adsorbate polarity

被引:175
作者
Chowdhury, Pradip [1 ]
Mekala, Samuel [1 ]
Dreisbach, Frieder [2 ]
Gumma, Sasidhar [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Chem Engn, Gauhati 781039, India
[2] Rubohtherm GmbH, D-44799 Bochum, Germany
关键词
Cu-BTC; MIL-101; Virial-Langmuir model; Dual Site Langmuir model; Electrostatic interactions; HIGH-PRESSURE ADSORPTION; COMPARATIVE MOLECULAR SIMULATION; GAS-ADSORPTION; METHANE ADSORPTION; HYDROGEN STORAGE; CARBON-DIOXIDE; CATALYTIC-PROPERTIES; SEPARATION; ISOTHERMS; CU-3(BTC)(2);
D O I
10.1016/j.micromeso.2011.11.022
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
A comparative adsorption study of three gases viz. CO, CO2 and CH4 on two adsorbents viz. Cu-BTC (or HKUST-1) and Cr-BDC (or MIL-101) is reported in this article. The gravimetric adsorption equilibrium measurements on the samples were performed in a Rubotherm magnetic suspension balance at three different temperatures: 295, 318 and 353 K and pressures ranging between 0 and 100 bar. Virial-Langmuir model was used to model the experimental data on Cu-BTC, whereas Dual Site Langmuir (DSL) model was used for adsorption on MIL-101. For all gases the enthalpy of adsorption at low loading was higher on MIL-101 than that on Cu-BTC, indicating the availability of open metal sites in case of MIL-101. Moreover, a sharp decrease in enthalpy of adsorption is observed in case of MIL-101, whereas only a moderate decrease is observed in case of Cu-BTC. CO has a large Henry's constant on MIL-101, whereas at higher pressures, the solid exhibits better capacity for CO2. In case of Cu-BTC. CO2 has a higher capacity on the adsorbent as compared to the other two gases throughout the entire range of pressures studied. All the experimental data is critically analyzed by examining the role of open metal centers, adsorbate polarity and the effect of temperature on the electrostatic interactions. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:246 / 252
页数:7
相关论文
共 50 条
[1]   Probing the Lewis acidity and catalytic activity of the metal-organic framework [Cu3(btc)2] (BTC = benzene-1,3,5-tricarboxylate) [J].
Alaerts, Luc ;
Seguin, Etienne ;
Poelman, Hilde ;
Thibault-Starzyk, Frederic ;
Jacobs, Pierre A. ;
De Vos, Dirk E. .
CHEMISTRY-A EUROPEAN JOURNAL, 2006, 12 (28) :7353-7363
[2]   High-pressure adsorption isotherms of N2,CH4,O2, and ar on different carbonaceous adsorbents [J].
Belmabkhout, Y ;
De Weireld, G ;
Frère, M .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2004, 49 (05) :1379-1391
[3]   Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47 [J].
Bourrelly, S ;
Llewellyn, PL ;
Serre, C ;
Millange, F ;
Loiseau, T ;
Férey, G .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (39) :13519-13521
[4]   A metal-organic framework material that functions as an enantioselective catalyst for olefin epoxidation [J].
Cho, So-Hye ;
Ma, Baoqing ;
Nguyen, SonBinh T. ;
Hupp, Joseph T. ;
Albrecht-Schmitt, Thomas E. .
CHEMICAL COMMUNICATIONS, 2006, (24) :2563-2565
[5]   Gas Adsorption Properties of the Chromium-Based Metal Organic Framework MIL-101 [J].
Chowdhury, Pradip ;
Bikkina, Chaitanya ;
Gumma, Sasidhar .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (16) :6616-6621
[6]   Comparison of adsorption isotherms on Cu-BTC metal organic frameworks synthesized from different routes [J].
Chowdhury, Pradip ;
Bikkina, Chaitanya ;
Meister, Dirk ;
Dreisbach, Frieder ;
Gumma, Sasidhar .
MICROPOROUS AND MESOPOROUS MATERIALS, 2009, 117 (1-2) :406-413
[7]   A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n [J].
Chui, SSY ;
Lo, SMF ;
Charmant, JPH ;
Orpen, AG ;
Williams, ID .
SCIENCE, 1999, 283 (5405) :1148-1150
[8]   High pressure adsorption data of methane, nitrogen, carbon dioxide and their binary and ternary mixtures on activated carbon [J].
Dreisbach, F ;
Staudt, R ;
Keller, JU .
ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 1999, 5 (03) :215-227
[9]   Calorimetric heats of adsorption and adsorption isotherms .1. O-2, N-2, Ar, CO2, CH4, C2H6 and SF6 on silicalite [J].
Dunne, JA ;
Mariwals, R ;
Rao, M ;
Sircar, S ;
Gorte, RJ ;
Myers, AL .
LANGMUIR, 1996, 12 (24) :5888-5895
[10]   Assessment of isoreticular metal-organic frameworks for adsorption separations:: A molecular simulation study of methane/n-butane mixtures [J].
Düren, T ;
Snurr, RQ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (40) :15703-15708