A Knowledge-Based Weighting Framework to Boost the Power of Genome-Wide Association Studies

被引:31
作者
Li, Miao-Xin [1 ,2 ,3 ]
Sham, Pak C. [2 ,3 ,4 ]
Cherny, Stacey S. [2 ,4 ]
Song, You-Qiang [1 ,3 ]
机构
[1] Univ Hong Kong, Dept Biochem, Hong Kong, Hong Kong, Peoples R China
[2] Univ Hong Kong, Dept Psychiat, Hong Kong, Hong Kong, Peoples R China
[3] Univ Hong Kong, Ctr Reprod Dev & Growth, Hong Kong, Hong Kong, Peoples R China
[4] Univ Hong Kong, State Key Lab Brain & Cognit Sci, Hong Kong, Hong Kong, Peoples R China
来源
PLOS ONE | 2010年 / 5卷 / 12期
关键词
FALSE DISCOVERY RATE; INTERACTION NETWORK; ALZHEIMERS-DISEASE; PROTEIN; PRIORITIZATION; INTERACTOME; INFERENCE; DATABASE; TRAITS; GENES;
D O I
10.1371/journal.pone.0014480
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: We are moving to second-wave analysis of genome-wide association studies (GWAS), characterized by comprehensive bioinformatical and statistical evaluation of genetic associations. Existing biological knowledge is very valuable for GWAS, which may help improve their detection power particularly for disease susceptibility loci of moderate effect size. However, a challenging question is how to utilize available resources that are very heterogeneous to quantitatively evaluate the statistic significances. Methodology/Principal Findings: We present a novel knowledge-based weighting framework to boost power of the GWAS and insightfully strengthen their explorative performance for follow-up replication and deep sequencing. Built upon diverse integrated biological knowledge, this framework directly models both the prior functional information and the association significances emerging from GWAS to optimally highlight single nucleotide polymorphisms (SNPs) for subsequent replication. In the theoretical calculation and computer simulation, it shows great potential to achieve extra over 15% power to identify an association signal of moderate strength or to use hundreds of whole-genome subjects fewer to approach similar power. In a case study on late-onset Alzheimer disease (LOAD) for a proof of principle, it highlighted some genes, which showed positive association with LOAD in previous independent studies, and two important LOAD related pathways. These genes and pathways could be originally ignored due to involved SNPs only having moderate association significance. Conclusions/Significance: With user-friendly implementation in an open-source Java package, this powerful framework will provide an important complementary solution to identify more true susceptibility loci with modest or even small effect size in current GWAS for complex diseases.
引用
收藏
页数:10
相关论文
共 54 条
[1]   SUSPECTS: enabling fast and effective prioritization of positional candidates [J].
Adie, EA ;
Adams, RR ;
Evans, KL ;
Porteous, DJ ;
Pickard, BS .
BIOINFORMATICS, 2006, 22 (06) :773-774
[2]   Gene prioritization through genomic data fusion [J].
Aerts, S ;
Lambrechts, D ;
Maity, S ;
Van Loo, P ;
Coessens, B ;
De Smet, F ;
Tranchevent, LC ;
De Moor, B ;
Marynen, P ;
Hassan, B ;
Carmeliet, P ;
Moreau, Y .
NATURE BIOTECHNOLOGY, 2006, 24 (05) :537-544
[3]   Guilt beyond a reasonable doubt [J].
Altshuler, David ;
Daly, Mark .
NATURE GENETICS, 2007, 39 (07) :813-815
[4]  
Bader GD, 2003, NUCLEIC ACIDS RES, V31, P248, DOI 10.1093/nar/gkg056
[5]   Multiple hypotheses testing with weights [J].
Benjamini, Y ;
Hochberg, Y .
SCANDINAVIAN JOURNAL OF STATISTICS, 1997, 24 (03) :407-418
[6]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[7]   Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database [J].
Bertram, Lars ;
McQueen, Matthew B. ;
Mullin, Kristina ;
Blacker, Deborah ;
Tanzi, Rudolph E. .
NATURE GENETICS, 2007, 39 (01) :17-23
[8]   Natural selection on genes that underlie human disease susceptibility [J].
Blekhman, Ran ;
Man, Orna ;
Herrmann, Leslie ;
Boyko, Adam R. ;
Indap, Amit ;
Kosiol, Carolin ;
Bustamante, Carlos D. ;
Teshima, Kosuke M. ;
Przeworskil, Molly .
CURRENT BIOLOGY, 2008, 18 (12) :883-889
[9]   Unequal evolutionary conservation of human protein interactions in interologous networks. [J].
Brown, Kevin V. ;
Jurisica, Igor .
GENOME BIOLOGY, 2007, 8 (05)
[10]   Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls [J].
Burton, Paul R. ;
Clayton, David G. ;
Cardon, Lon R. ;
Craddock, Nick ;
Deloukas, Panos ;
Duncanson, Audrey ;
Kwiatkowski, Dominic P. ;
McCarthy, Mark I. ;
Ouwehand, Willem H. ;
Samani, Nilesh J. ;
Todd, John A. ;
Donnelly, Peter ;
Barrett, Jeffrey C. ;
Davison, Dan ;
Easton, Doug ;
Evans, David ;
Leung, Hin-Tak ;
Marchini, Jonathan L. ;
Morris, Andrew P. ;
Spencer, Chris C. A. ;
Tobin, Martin D. ;
Attwood, Antony P. ;
Boorman, James P. ;
Cant, Barbara ;
Everson, Ursula ;
Hussey, Judith M. ;
Jolley, Jennifer D. ;
Knight, Alexandra S. ;
Koch, Kerstin ;
Meech, Elizabeth ;
Nutland, Sarah ;
Prowse, Christopher V. ;
Stevens, Helen E. ;
Taylor, Niall C. ;
Walters, Graham R. ;
Walker, Neil M. ;
Watkins, Nicholas A. ;
Winzer, Thilo ;
Jones, Richard W. ;
McArdle, Wendy L. ;
Ring, Susan M. ;
Strachan, David P. ;
Pembrey, Marcus ;
Breen, Gerome ;
St Clair, David ;
Caesar, Sian ;
Gordon-Smith, Katherine ;
Jones, Lisa ;
Fraser, Christine ;
Green, Elain K. .
NATURE, 2007, 447 (7145) :661-678