Intraribbon Heterojunction Formation in Ultranarrow Graphene Nanoribbons

被引:159
作者
Blankenburg, Stephan [1 ]
Cai, Jinming [1 ]
Ruffieux, Pascal [1 ]
Jaafar, Rached [1 ]
Passerone, Daniele [1 ]
Feng, Xinliang [2 ]
Muellen, Klaus [2 ]
Fasel, Roman [1 ,3 ]
Pignedoli, Carlo A. [1 ]
机构
[1] EMPA, Swiss Fed Labs Mat Sci & Technol, Nanotech Surfaces Lab, CH-8600 Dubendorf, Switzerland
[2] Max Planck Inst Polymer Res, D-55124 Mainz, Germany
[3] Univ Bern, Dept Chem & Biochem, CH-3012 Bern, Switzerland
基金
瑞士国家科学基金会;
关键词
graphene nanoribbon; heterojunction; nanoscale materials; synthesis and processing; molecular self-assembly; computational nanotechnology; CYCLODEHYDROGENATION; DEFECT;
D O I
10.1021/nn203129a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene nanoribbons-semiconducting quasi-one-dimensional graphene structures-have great potential for the realization of novel electronic devices. Recently, graphene nanoribbon heterojunctions-interfaces between nanoribbons with unequal band gaps-have been realized with lithographic etching techniques and via chemical routes to exploit quantum transport phenomena. However, standard fabrication techniques are not suitable for ribbons narrower than similar to 5 nm and do not allow to control the width and edge structure of a specific device with atomic precision. Here, we report the realization of graphene nanoribbon heterojunctions with lateral dimensions below 2 nm via controllable dehydrogenation of polyanthrylene oligomers self-assembled on a Au(111) surface from molecular precursors. Atomistic simulations reveal the microscopic mechanisms responsible for intraribbon heterojunction formation. We demonstrate the capability to selectively modify the heterojunctions by activating the dehydrogenation reaction on single units of the nanoribbons by electron injection from the tip of a scanning tunneling microscope.
引用
收藏
页码:2020 / 2025
页数:6
相关论文
共 40 条
[1]   Electronic structure and stability of semiconducting graphene nanoribbons [J].
Barone, Veronica ;
Hod, Oded ;
Scuseria, Gustavo E. .
NANO LETTERS, 2006, 6 (12) :2748-2754
[2]   Zipping Up: Cooperativity Drives the Synthesis of Graphene Nanoribbons [J].
Bjork, Jonas ;
Stafstrom, Sven ;
Hanke, Felix .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (38) :14884-14887
[3]   Defect-induced negative differential resistance in single-walled carbon nanotubes [J].
Buchs, G. ;
Ruffieux, P. ;
Groening, P. ;
Groening, O. .
APPLIED PHYSICS LETTERS, 2008, 93 (07)
[4]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[5]   Graphene nano-ribbon electronics [J].
Chen, Zhihong ;
Lin, Yu-Ming ;
Rooks, Michael J. ;
Avouris, Phaedon .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) :228-232
[6]   Graphene Nanoribbons by Chemists: Nanometer-Sized, Soluble, and Defect-Free [J].
Doessel, Lukas ;
Gherghel, Lileta ;
Feng, Xinliang ;
Muellen, Klaus .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (11) :2540-2543
[7]   Novel properties of graphene nanoribbons: a review [J].
Dutta, Sudipta ;
Pati, Swapan K. .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (38) :8207-8223
[8]   Peculiar width dependence of the electronic properties of carbon nanoribbons [J].
Ezawa, M .
PHYSICAL REVIEW B, 2006, 73 (04)
[9]   Graphitic Nanoribbons with Dibenzo[e,l]pyrene Repeat Units: Synthesis and Self-Assembly [J].
Fogel, Yulia ;
Zhi, Linjie ;
Rouhanipour, Ali ;
Andrienko, Denis ;
Raeder, Hans Joachim ;
Muellen, Klaus .
MACROMOLECULES, 2009, 42 (18) :6878-6884
[10]   Heterojunction band offset engineering [J].
Franciosi, A ;
Van de Walle, CG .
SURFACE SCIENCE REPORTS, 1996, 25 (1-4) :1-+