Inverse total variation flow

被引:33
作者
Burger, M.
Frick, K.
Osher, S.
Scherzer, O.
机构
[1] Univ Innsbruck, Dept Comp Sci, A-6020 Innsbruck, Austria
[2] Univ Munster, Inst Numer & Appl Math, D-48149 Munster, Germany
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
scale space methods; total variation; Bregman distance;
D O I
10.1137/060660564
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we analyze iterative regularization with the Bregman distance of the total variation seminorm. Moreover, we prove existence of a solution of the corresponding flow equation as introduced in [ M. Burger, G. Gilboa, S. Osher, and J. Xu, Commun. Math. Sci., 4 ( 2006), pp. 179 - 212] in a functional analytical setting using methods from convex analysis. The results are generalized to variational denoising methods with Lp- norm. t- to- data terms and Bregman distance regularization terms. For the associated. ow equations well- posedness is derived using recent results on metric gradient. ows from [ L. Ambrosio, N. Gigli, and G. Savar ' e, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Z " urich, Birkh " auser Verlag, Basel, 2005]. In contrast to previous work the results of this paper apply for the analysis of variational denoising methods with the Bregman distance under adequate noise assumptions. Aside from the theoretical results we introduce a level set technique based on Bregman distance regularization for denoising of surfaces and demonstrate the e. ciency of this method.
引用
收藏
页码:366 / 395
页数:30
相关论文
共 31 条
[1]   ANALYSIS OF BOUNDED VARIATION PENALTY METHODS FOR ILL-POSED PROBLEMS [J].
ACAR, R ;
VOGEL, CR .
INVERSE PROBLEMS, 1994, 10 (06) :1217-1229
[2]  
Ambrosio L., 2005, LECT MATH ETH ZURICH
[3]   Some qualitative properties for the total variation flow [J].
Andreu, F ;
Caselles, V ;
Diaz, JI ;
Mazón, JM .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 188 (02) :516-547
[4]  
ANDREU F, 2001, DIFFERENTIAL INTEGRA, V14, P347
[5]  
Andreu-Vaillo F., 2004, PROGR MATH, V223
[6]  
[Anonymous], 2001, OSCILLATING PATTERNS
[7]  
Anzellotti G., 1983, ANN MAT PUR APPL, V4, P293
[8]   Modeling very oscillating signals. Application to image processing [J].
Aubert, G ;
Aujol, JF .
APPLIED MATHEMATICS AND OPTIMIZATION, 2005, 51 (02) :163-182
[9]   Explicit solutions of the eigenvalue problem -div(Du/|Du|) = u in R2 [J].
Bellettini, G ;
Caselles, V ;
Novaga, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (04) :1095-1129
[10]   The total variation flow in RN [J].
Bellettini, G ;
Caselles, V ;
Novaga, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 184 (02) :475-525