Effect of disorder on the optical properties of colloidal crystals

被引:168
作者
Rengarajan, R
Mittleman, D
Rich, C
Colvin, V
机构
[1] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77251 USA
[2] Rice Univ, Dept Chem, Houston, TX 77251 USA
来源
PHYSICAL REVIEW E | 2005年 / 71卷 / 01期
关键词
D O I
10.1103/PhysRevE.71.016615
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Colloidal crystals offer a promising route for the formation of three-dimensional photonic crystals. The primary constraint in working with these materials is the disorder present in these self-assembled materials. Sphere vacancies, line dislocations, and random position errors all lead to a degradation in the optical properties. It is important to characterize these effects so as to guide further developments in colloidal crystal optics. Here, we report a, systematic and quantitative study of disorder in colloidal crystals with visible diffractive properties. Using optical spectroscopy and digital imaging we have correlated several measures of structural disorder with variations in the transmissive and reflective optical properties. We observe a critical size distribution above, which rapid deterioration of the lowest stop band is observed. Below this critical size distribution, we observe excellent optical quality, nearly independent of the size distribution. Single sphere vacancies also increase in crystals formed from more polydisperse spheres. The primary effect of this type of defect is to increase the broadband diffuse scattering.
引用
收藏
页数:11
相关论文
共 86 条
[31]   Template-directed preparation of macroporous polymers with oriented and crystalline arrays of voids [J].
Jiang, P ;
Hwang, KS ;
Mittleman, DM ;
Bertone, JF ;
Colvin, VL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (50) :11630-11637
[32]  
Joannopoulos J. D., 2008, Molding the flow of light
[34]   Ordered mesoporous polymers of tunable pore size from colloidal silica templates [J].
Johnson, SA ;
Ollivier, PJ ;
Mallouk, TE .
SCIENCE, 1999, 283 (5404) :963-965
[35]   Light exiting from real photonic band gap crystals is diffuse and strongly directional [J].
Koenderink, AF ;
Vos, WL .
PHYSICAL REVIEW LETTERS, 2003, 91 (21)
[36]   Enhanced backscattering from photonic crystals [J].
Koenderink, AF ;
Megens, M ;
van Soest, G ;
Vos, WL ;
Lagendijk, A .
PHYSICS LETTERS A, 2000, 268 (1-2) :104-111
[37]   Two-dimensional photonic-bandgap structures operating at near infrared wavelengths [J].
Krauss, TF ;
DeLaRue, RM ;
Brand, S .
NATURE, 1996, 383 (6602) :699-702
[38]  
Kulinowski KM, 2000, ADV MATER, V12, P833, DOI 10.1002/(SICI)1521-4095(200006)12:11<833::AID-ADMA833>3.0.CO
[39]  
2-X
[40]  
Kumacheva E, 2002, ADV MATER, V14, P221, DOI 10.1002/1521-4095(20020205)14:3<221::AID-ADMA221>3.0.CO