Universality of anomalous one-dimensional heat conductivity

被引:84
作者
Lepri, S
Livi, R
Politi, A
机构
[1] Ist Nazl Fis Mat, UdR Firenza, I-50019 Sesto Fiorentino, Italy
[2] Dipartimento Fis, I-50019 Sesto Fiorentino, Italy
[3] Ist Nazl Ott Applicata, I-50125 Florence, Italy
来源
PHYSICAL REVIEW E | 2003年 / 68卷 / 06期
关键词
D O I
10.1103/PhysRevE.68.067102
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In one and two dimensions, transport coefficients may diverge in the thermodynamic limit due to long-time correlation of the corresponding currents. The effective asymptotic behavior is addressed with reference to the problem of heat transport in one-dimensional crystals, modeled by chains of classical nonlinear oscillators. Extensive accurate equilibrium and nonequilibrium numerical simulations confirm that the finite-size thermal conductivity diverges with system size L as kappaproportional toL(alpha). However, the exponent alpha deviates systematically from the theoretical prediction alpha=1/3 proposed in a recent paper [O. Narayan and S. Ramaswamy, Phys. Rev. Lett. 89, 200601 (2002)].
引用
收藏
页数:4
相关论文
共 20 条
[1]   Normal modes on average for purely stochastic systems [J].
Alabiso, C ;
Casartelli, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (07) :1223-1230
[2]   Unusually high thermal conductivity of carbon nanotubes [J].
Berber, S ;
Kwon, YK ;
Tománek, D .
PHYSICAL REVIEW LETTERS, 2000, 84 (20) :4613-4616
[3]   Anomalous heat conduction in a one-dimensional ideal gas [J].
Casati, G ;
Prosen, T .
PHYSICAL REVIEW E, 2003, 67 (01) :4
[4]   One-dimensional heat conductivity exponent from a random collision model [J].
Deutsch, JM ;
Narayan, O .
PHYSICAL REVIEW E, 2003, 68 (01) :3-102013
[5]   Heat conduction in a one-dimensional gas of elastically colliding particles of unequal masses [J].
Dhar, A .
PHYSICAL REVIEW LETTERS, 2001, 86 (16) :3554-3557
[6]   MODE-COUPLING THEORY AND TAILS IN CA FLUIDS [J].
ERNST, MH .
PHYSICA D, 1991, 47 (1-2) :198-211
[7]   Normal heat conductivity of the one-dimensional lattice with periodic potential of nearest-neighbor interaction [J].
Gendelman, OV ;
Savin, AV .
PHYSICAL REVIEW LETTERS, 2000, 84 (11) :2381-2384
[8]   Finite thermal conductivity in 1D lattices [J].
Giardiná, C ;
Livi, R ;
Politi, A ;
Vassalli, M .
PHYSICAL REVIEW LETTERS, 2000, 84 (10) :2144-2147
[9]   Heat conduction and entropy production in a one-dimensional hard-particle gas [J].
Grassberger, P ;
Nadler, W ;
Yang, L .
PHYSICAL REVIEW LETTERS, 2002, 89 (18) :1-180601
[10]  
GRASSBERGER P, CONDMAT0204247