Universality of anomalous one-dimensional heat conductivity

被引:84
作者
Lepri, S
Livi, R
Politi, A
机构
[1] Ist Nazl Fis Mat, UdR Firenza, I-50019 Sesto Fiorentino, Italy
[2] Dipartimento Fis, I-50019 Sesto Fiorentino, Italy
[3] Ist Nazl Ott Applicata, I-50125 Florence, Italy
来源
PHYSICAL REVIEW E | 2003年 / 68卷 / 06期
关键词
D O I
10.1103/PhysRevE.68.067102
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In one and two dimensions, transport coefficients may diverge in the thermodynamic limit due to long-time correlation of the corresponding currents. The effective asymptotic behavior is addressed with reference to the problem of heat transport in one-dimensional crystals, modeled by chains of classical nonlinear oscillators. Extensive accurate equilibrium and nonequilibrium numerical simulations confirm that the finite-size thermal conductivity diverges with system size L as kappaproportional toL(alpha). However, the exponent alpha deviates systematically from the theoretical prediction alpha=1/3 proposed in a recent paper [O. Narayan and S. Ramaswamy, Phys. Rev. Lett. 89, 200601 (2002)].
引用
收藏
页数:4
相关论文
共 20 条
[11]   COMMENT ON A PAPER OF MORI ON TIME-CORRELATION EXPRESSIONS FOR TRANSPORT PROPERTIES [J].
GREEN, MS .
PHYSICAL REVIEW, 1960, 119 (03) :829-830
[12]   Heat conduction in the diatomic Toda lattice revisited [J].
Hatano, T .
PHYSICAL REVIEW E, 1999, 59 (01) :R1-R4
[13]   Heat conduction in chains of nonlinear oscillators [J].
Lepri, S ;
Livi, R ;
Politi, A .
PHYSICAL REVIEW LETTERS, 1997, 78 (10) :1896-1899
[14]   Thermal conduction in classical low-dimensional lattices [J].
Lepri, S ;
Livi, R ;
Politi, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2003, 377 (01) :1-80
[15]   On the anomalous thermal conductivity of one-dimensional lattices [J].
Lepri, S ;
Livi, R ;
Politi, A .
EUROPHYSICS LETTERS, 1998, 43 (03) :271-276
[17]   THE ACCURACY OF SYMPLECTIC INTEGRATORS [J].
MCLACHLAN, RI ;
ATELA, P .
NONLINEARITY, 1992, 5 (02) :541-562
[18]   Anomalous heat conduction in one-dimensional momentum-conserving systems [J].
Narayan, O ;
Ramaswamy, S .
PHYSICAL REVIEW LETTERS, 2002, 89 (20)
[19]  
POMEAU Y, 1975, PHYS REP, V63, P19
[20]   Momentum conservation implies anomalous energy transport in 1D classical lattices [J].
Prosen, T ;
Campbell, DK .
PHYSICAL REVIEW LETTERS, 2000, 84 (13) :2857-2860