Progress in silicon-based quantum computing

被引:61
作者
Clark, RG [1 ]
Brenner, R
Buehler, TM
Chan, V
Curson, NJ
Dzurak, AS
Gauja, E
Goan, HS
Greentree, AD
Hallam, T
Hamilton, AR
Hollenberg, LCL
Jamieson, DN
McCallum, JC
Milburn, GJ
O'Brien, JL
Oberbeck, L
Pakes, CI
Prawer, SD
Reilly, DJ
Ruess, FJ
Schofield, SR
Simmons, MY
Stanley, FE
Starrett, RP
Wellard, C
Yang, C
机构
[1] Univ New S Wales, Sch Phys, Ctr Quantum Comp Technol, Sydney, NSW 2052, Australia
[2] Univ New S Wales, Sch Elect Engn & Telecommun, Ctr Quantum Comp Technol, Sydney, NSW 2052, Australia
[3] Univ Melbourne, Sch Phys, Ctr Quantum Comp Technol, Melbourne, Vic 3010, Australia
[4] Univ Queensland, Dept Phys, Ctr Quantum Comp Technol, Brisbane, Qld 4072, Australia
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2003年 / 361卷 / 1808期
关键词
quantum computer; silicon; single electron transistor; charge qubit; spin qubit;
D O I
10.1098/rsta.2003.1221
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We review progress at the Australian Centre for Quantum Computer Technology towards the fabrication and demonstration of spin qubits and charge qubits based on phosphorus donor atoms embedded in intrinsic silicon. Fabrication is being pursued via two complementary pathways: a 'top-down' approach for near-term production of few-qubit demonstration devices and a 'bottom-up' approach for large-scale qubit arrays with sub-nanometre precision. The 'top-down' approach employs a low-energy (keV) ion beam to implant the phosphorus atoms. Single-atom control during implantation is achieved by monitoring on-chip detector electrodes, integrated within the device structure. In contrast, the 'bottom-up' approach uses scanning tunnelling microscope lithography and epitaxial silicon overgrowth to construct devices at an atomic scale. In both cases, surface electrodes control the qubit using voltage pulses, and dual single-electron transistors operating near the quantum limit provide fast read-out with spurious-signal rejection.
引用
收藏
页码:1451 / 1471
页数:21
相关论文
共 49 条
  • [1] Radio-frequency single-electron transistor as readout device for qubits: Charge sensitivity and backaction
    Aassime, A
    Johansson, G
    Wendin, G
    Schoelkopf, RJ
    Delsing, P
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (15) : 3376 - 3379
  • [2] Bertolini G., 1968, SEMICONDUCTOR DETECT
  • [3] Double-island single-electron transistor for noise-suppressed detection of charge transfer
    Brenner, R
    Hamilton, AR
    Clark, RG
    Dzurak, AS
    [J]. MICROELECTRONIC ENGINEERING, 2003, 67-8 : 826 - 831
  • [4] The twin radio frequency single electron transistor for correlated charge detection on microsecond time-scales
    Buehler, TM
    Reilly, DJ
    Starrett, RP
    Kenyon, S
    Hamilton, AR
    Dzurak, AS
    Clark, RG
    [J]. MICROELECTRONIC ENGINEERING, 2003, 67-8 : 775 - 781
  • [5] Single electron devices for simulating read-out in a solid state quantum computer
    Buehler, TM
    Reilly, DJ
    Starrett, RP
    Hamilton, AR
    Brenner, R
    Kenyon, S
    Court, N
    Dzurak, AS
    Clark, RG
    [J]. SURFACE SCIENCE, 2003, 532 : 1199 - 1203
  • [6] Correlated charge detection for readout of a solid-state quantum computer
    Buehler, TM
    Reilly, DJ
    Brenner, R
    Hamilton, AR
    Dzurak, AS
    Clark, RG
    [J]. APPLIED PHYSICS LETTERS, 2003, 82 (04) : 577 - 579
  • [7] BUEHLER TM, 2003, CONDMAT0302085
  • [8] BUEHLER TM, 2003, CONDMAT0304384
  • [9] Single-electron transistor architectures for charge motion detection in solid-state quantum computer devices
    Bühler, T.M.
    Brenner, R.
    Reilly, D.J.
    Hamilton, A.R.
    Dzurak, A.S.
    Clark, R.G.
    [J]. Smart Materials and Structures, 2002, 11 (05) : 749 - 755
  • [10] Resonant Cooper-pair tunneling: Quantum noise and measurement characteristics
    Clerk, AA
    Girvin, SM
    Nguyen, AK
    Stone, AD
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (17) : 176804/1 - 176804/4