Redox regulation of the protein tyrosine phosphatase PTP1B in cancer cells

被引:92
作者
Lou, Yi-Wei [1 ]
Chen, Yi-Yun [1 ,2 ]
Hsu, Shu-Fan [1 ,2 ,3 ]
Chen, Ren-Kun [2 ,3 ]
Lee, Chih-Lei [3 ]
Khoo, Kay-Hooi [1 ,2 ,3 ]
Tonks, Nicholas K. [4 ]
Meng, Tzu-Ching [1 ,2 ]
机构
[1] Acad Sinica, Inst Biol Chem, Sect 2, Taipei 11529, Taiwan
[2] Natl Taiwan Univ, Coll Life Sci, Inst Biochem Sci, Taipei 10764, Taiwan
[3] Acad Sinica, Taipei 115, Taiwan
[4] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA
关键词
cancer cells; mass spectrometry; protein tyrosine phosphatase; PTPIB; reactive oxygen species;
D O I
10.1111/j.1742-4658.2007.06173.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The oxidation and inactivation of protein tyrosine phosphatases is one mechanism by which reactive oxygen species influence tyrosine phosphorylation-dependent signaling events and exert their biological functions. In the present study, we determined the redox status of endogenous protein tyrosine phosphatases in HepG2 and A431 human cancer cells, in which reactive oxygen species are produced constitutively. We used mass spectrometry to assess the state of oxidation of the catalytic cysteine residue of endogenous PTP1B and show that this residue underwent both reversible and irreversible oxidation to high stoichiometry in response to intrinsic reactive oxygen species production. In addition, our data show that the oxidation of PTP1B is specific to the active site Cys, with the other Cys residues in the protein remaining in a reduced state. Treatment of these cells with diphenyleniodonium, an inhibitor of NADPH oxidases, decreased reactive oxygen species levels. This resulted in inhibition of protein tyrosine phosphatase oxidation, concomitant with decreased tyrosine phosphorylation of cellular proteins and inhibition of anchorage-independent cell growth. Therefore, our data also suggest that the high level of intrinsic reactive oxygen species may contribute to the transformed phenotype of HepG2 and A431 cells via constitutive inactivation of cellular protein tyrosine phosphatases.
引用
收藏
页码:69 / 88
页数:20
相关论文
共 57 条
[1]   Protein tyrosine phosphatases in the human genome [J].
Alonso, A ;
Sasin, J ;
Bottini, N ;
Friedberg, I ;
Friedberg, I ;
Osterman, A ;
Godzik, A ;
Hunter, T ;
Dixon, J ;
Mustelin, T .
CELL, 2004, 117 (06) :699-711
[2]   A genomic perspective on protein tyrosine phosphatases: gene structure, pseudogenes, and genetic disease linkage [J].
Andersen, JN ;
Jansen, PG ;
Echwald, SM ;
Mortensen, OH ;
Fukada, T ;
Del Vecchio, R ;
Tonks, NK ;
Moller, NPH .
FASEB JOURNAL, 2004, 18 (01) :8-30
[3]   Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1 [J].
Arnold, RS ;
Shi, J ;
Murad, E ;
Whalen, AM ;
Sun, CQ ;
Polavarapu, R ;
Parthasarathy, S ;
Petros, JA ;
Lambeth, JD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (10) :5550-5555
[4]   Epidermal growth factor (EGF)-induced generation of hydrogen peroxide - Role in EGF receptor-mediated tyrosine phosphorylation [J].
Bae, YS ;
Kang, SW ;
Seo, MS ;
Baines, IC ;
Tekle, E ;
Chock, PB ;
Rhee, SG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (01) :217-221
[5]   The role of cysteine residues as redox-sensitive regulatory switches [J].
Barford, D .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2004, 14 (06) :679-686
[6]   PURIFICATION AND CRYSTALLIZATION OF THE CATALYTIC DOMAIN OF HUMAN PROTEIN-TYROSINE-PHOSPHATASE 1B EXPRESSED IN ESCHERICHIA-COLI [J].
BARFORD, D ;
KELLER, JC ;
FLINT, AJ ;
TONKS, NK .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 239 (05) :726-730
[7]   NADPH oxidases: not just for leukocytes anymore! [J].
Bokoch, GM ;
Knaus, UG .
TRENDS IN BIOCHEMICAL SCIENCES, 2003, 28 (09) :502-508
[8]   Endogenous reactive oxygen intermediates activate tyrosine kinases in human neutrophils [J].
Brumelll, JH ;
Burkhardt, AL ;
Bolen, JB ;
Grinstein, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (03) :1455-1461
[9]   AN IN-GEL ASSAY FOR PROTEIN-TYROSINE-PHOSPHATASE ACTIVITY - DETECTION OF WIDESPREAD DISTRIBUTION IN CELLS AND TISSUES [J].
BURRIDGE, K ;
NELSON, A .
ANALYTICAL BIOCHEMISTRY, 1995, 232 (01) :56-64
[10]   HYDROPEROXIDE METABOLISM IN MAMMALIAN ORGANS [J].
CHANCE, B ;
SIES, H ;
BOVERIS, A .
PHYSIOLOGICAL REVIEWS, 1979, 59 (03) :527-605