Recombination and resistive losses at ZnO/a-Si: H/c-Si interfaces in heterojunction back contacts for Si solar cells

被引:20
作者
Einsele, Florian
Rostan, Philipp J.
Schubert, Markus B.
Rau, Uwe [1 ]
机构
[1] Forschungszentrum, IEF 5 Photovoltaik, D-52425 Julich, Germany
[2] Univ Stuttgart, Inst Phys Elektron, D-70569 Stuttgart, Germany
[3] Centrotherm Photovolt Technol GmbH, D-78467 Constance, Germany
关键词
D O I
10.1063/1.2803749
中图分类号
O59 [应用物理学];
学科分类号
摘要
We investigate resistive losses at p-type crystalline Si/hydrogen passivated Si:H/ZnO:Al heterojunction back contacts for high efficiency silicon solar cells. A low tunneling resistance for the (p-type) Si:H/(n-type) ZnO part of the junction requires deposition of Si:H with a high hydrogen dilution rate R-H>40 resulting in a highly doped microcrystalline (mu c) Si:H layer. Such a mu c-Si:H layer if deposited directly on a Si wafer yields a surface recombination velocity of S approximate to 180 cm/s. Using the same layer as part of a (p-type) c-Si/Si:H/ZnO:Al back contact in a solar cell results in an open circuit voltage V-OC=640 mV and a fill factor FF=80%. Insertion of an undoped amorphous (i) a-Si:H layer between the mu c-Si:H and the wafer leads to a further decrease of S and, for the solar cells, to an increase of V-OC. However, if the thickness of this intrinsic layer exceeds a threshold value of 4-5 nm, resistive losses degrade the fill factor FF of the solar cells. Temperature dependent measurements of the contact resistance unveil activation energies in a range of 0.49-0.65 eV, which we attribute to the valence band offset between a-Si:H and c-Si. The balance of FF losses and V-OC gains determines the optimum (i) a-Si:H interlayer thickness for (i) a-Si:H/(p) mu c-Si:H double layer or (i) a-Si:H/(p) a-Si:H/(p) mu c-Si:H triple layer back contacts.(C) 2007 American Institute of Physics.
引用
收藏
页数:6
相关论文
共 27 条
[1]   Effect of frequency in the deposition of microcrystalline silicon from silane discharges [J].
Amanatides, E ;
Mataras, D ;
Rapakoulias, DE .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (11) :5799-5807
[2]   INSITU ELLIPSOMETRY OF THIN-FILM DEPOSITION - IMPLICATIONS FOR AMORPHOUS AND MICROCRYSTALLINE SI GROWTH [J].
COLLINS, RW ;
YANG, BY .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1989, 7 (05) :1155-1164
[3]   Surface passivation properties of boron-doped plasma-enhanced chemical vapor deposited hydrogenated amorphous silicon films on p-type crystalline Si substrates -: art. no. 022104 [J].
De Wolf, S ;
Beaucarne, G .
APPLIED PHYSICS LETTERS, 2006, 88 (02) :1-3
[4]   Conduction- and valence-band offsets at the hydrogenated amorphous silicon-carbon/crystalline silicon interface via capacitance techniques [J].
Essick, JM ;
Nobel, Z ;
Li, YM ;
Bennett, MS .
PHYSICAL REVIEW B, 1996, 54 (07) :4885-4890
[5]   BAND OFFSETS AND DEEP DEFECT DISTRIBUTION IN HYDROGENATED AMORPHOUS SILICON-CRYSTALLINE SILICON HETEROSTRUCTURES [J].
ESSICK, JM ;
COHEN, JD .
APPLIED PHYSICS LETTERS, 1989, 55 (12) :1232-1234
[6]   IMPROVEMENT OF GRAIN-SIZE AND DEPOSITION RATE OF MICROCRYSTALLINE SILICON BY USE OF VERY HIGH-FREQUENCY GLOW-DISCHARGE [J].
FINGER, F ;
HAPKE, P ;
LUYSBERG, M ;
CARIUS, R ;
WAGNER, H ;
SCHEIB, M .
APPLIED PHYSICS LETTERS, 1994, 65 (20) :2588-2590
[7]   Real-time monitoring and process control in amorphous/crystalline silicon heterojunction solar cells by spectroscopic ellipsometry and infrared spectroscopy [J].
Fujiwara, H ;
Kondo, M .
APPLIED PHYSICS LETTERS, 2005, 86 (03) :1-3
[8]   Impact of epitaxial growth at the heterointerface of a-Si:H/c-Si solar cells [J].
Fujiwara, Hiroyuki ;
Kondo, Michio .
APPLIED PHYSICS LETTERS, 2007, 90 (01)
[9]   KINETIC ELLIPSOMETRY STUDY OF THE HYDROGEN PLASMA-ETCHING OF HYDROGENATED AMORPHOUS-SILICON FILMS [J].
GODET, C ;
DREVILLON, B .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1988, 6 (04) :2482-2489
[10]  
HEINTZE M, 1993, J NONCRYST SOLIDS, V164, P985