Enhanced analytical power of SDS-PAGE using machine learning algorithms

被引:20
作者
Supek, Fran [1 ]
Peharec, Petra [2 ]
Krsnik-Rasol, Marijana [2 ]
Smuc, Tomislav [1 ]
机构
[1] Rudjer Boskovic Inst, Div Elect, Informat Syst Lab, Zagreb 10000, Croatia
[2] Univ Zagreb, Fac Sci, Div Biol, Dept Mol Biol, Zagreb 41000, Croatia
关键词
1-D gel electrophoresis; data mining; differential protein expression; principal component analysis; support vector machines;
D O I
10.1002/pmic.200700555
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We aim to demonstrate that a complex plant tissue protein mixture can be reliably "finger-printed' by running conventional 1-D SDS-PAGE in bulk and analyzing gel banding patterns using machine learning methods. An unsupervised approach to filter noise and systemic biases (principal component analysis) was coupled to state-of-the-art supervised methods for classification (support vector machines) and attribute ranking (ReliefF) to improve tissue discrimination, visualization, and recognition of important gel regions.
引用
收藏
页码:28 / 31
页数:4
相关论文
共 17 条
[1]   Normalization and analysis of residual variation in two-dimensional gel electrophoresis for quantitative differential proteomics [J].
Almeida, JS ;
Stanislaus, R ;
Krug, E ;
Arthur, JM .
PROTEOMICS, 2005, 5 (05) :1242-1249
[2]  
Asirvatham VS, 2002, PROTEOMICS, V2, P960, DOI 10.1002/1615-9861(200208)2:8<960::AID-PROT960>3.0.CO
[3]  
2-2
[4]  
Baldi P., 2001, Bioinformatics: the machine learning approach
[5]   Analysing proteomic data [J].
Barrett, J ;
Brophy, PM ;
Hamilton, JV .
INTERNATIONAL JOURNAL FOR PARASITOLOGY, 2005, 35 (05) :543-553
[6]   Quantitative proteome analysis in benign thyroid nodular disease using the fluorescent ruthenium II tris(bathophenanthroline disulfonate) stain [J].
Berger, K ;
Wissmann, D ;
Ihling, C ;
Kalkhof, S ;
Beck-Sickinger, A ;
Sinz, A ;
Paschke, R ;
Führer, D .
MOLECULAR AND CELLULAR ENDOCRINOLOGY, 2004, 227 (1-2) :21-30
[7]  
DUDA RO, 2001, PATTERN CLASSIFICATI, P115
[8]   Antibody pattern analysis in the Guillain-Barre syndrome and pathologic controls [J].
Dziewas, R ;
Kis, B ;
Grus, FH ;
Zimmermann, CW .
JOURNAL OF NEUROIMMUNOLOGY, 2001, 119 (02) :287-296
[9]   Diagnostic classification of autoantibody repertoires in endocrine ophthalmopathy using an artificial neural network [J].
Grus, FH ;
Augustin, AJ ;
Toth-Sagi, K .
OCULAR IMMUNOLOGY AND INFLAMMATION, 1998, 6 (01) :43-50
[10]   A primer on gene expression and microarrays for machine learning researchers [J].
Kuo, WP ;
Kim, EY ;
Trimarchi, J ;
Jenssen, TK ;
Vinterbo, SA ;
Ohno-Machado, L .
JOURNAL OF BIOMEDICAL INFORMATICS, 2004, 37 (04) :293-303