A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula

被引:186
作者
Kosuta, S
Chabaud, M
Lougnon, G
Gough, C
Dénarié, J
Barker, DG
Bécard, G
机构
[1] Univ Toulouse 3, CNRS V7R 5546, Equipe Mycol Vegetale, F-31326 Castanet Tolosan, France
[2] INRA, CNRS, Lab Biol Mol Relat Plantes Microorganismes, F-31326 Castanet Tolosan, France
关键词
D O I
10.1104/pp.011882
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Using dual cultures of arbuscular mycorrhizal (AM) fungi and Medicago truncatula separated by a physical barrier, we demonstrate that hyphae from germinating spores produce a diffusible factor that is perceived by roots in the absence of direct physical contact. This AM factor elicits expression of the Nod factor-inducible gene MtENOD11, visualized using a pMtENOD11-gusA reporter. Transgene induction occurs primarily in the root cortex, with expression stretching from the zone of root hair emergence to the region of mature root hairs. All AM fungi tested (Gigaspora rosea, Gigaspora gigantea, Gigaspora margarita, and Glomus intraradices) elicit a similar response, whereas pathogenic fungi such as Phythophthora medicaginis, Phoma medicaginis var pinodella and Fusarium solani f.sp. phaseoli do not, suggesting that the observed root response is specific to AM fungi. Finally, pMtENOD11-gusA induction in response to the diffusible AM fungal factor is also observed with all three M. truncatula Nod(-)/Myc(-) mutants (dmi1, dmi2, and dmi3), whereas the same mutants are blocked in their response to Nod factor. This positive response of the Nod-/Myc- mutants to the diffusible AM fungal factor and the different cellular localization of pMtENOD11-gusA expression in response to Nod factor versus AM factor suggest that signal transduction occurs via different pathways and that expression of MtENOD11 is differently regulated by the two diffusible factors.
引用
收藏
页码:952 / 962
页数:11
相关论文
共 42 条
[1]   Bayesian models for keyhole plan recognition in an adventure game [J].
Albrecht, DW ;
Zukerman, I ;
Nicholson, AE .
USER MODELING AND USER-ADAPTED INTERACTION, 1998, 8 (1-2) :5-47
[2]   PISUM-SATIVUM MUTANTS INSENSITIVE TO NODULATION ARE ALSO INSENSITIVE TO INVASION IN-VITRO BY THE MYCORRHIZAL FUNGUS, GIGASPORA-MARGARITA [J].
BALAJI, B ;
BA, AM ;
LARUE, TA ;
TEPFER, D ;
PICHE, Y .
PLANT SCIENCE, 1994, 102 (02) :195-203
[3]   EARLY EVENTS OF VESICULAR ARBUSCULAR MYCORRHIZA FORMATION ON RI T-DNA TRANSFORMED ROOTS [J].
BECARD, G ;
FORTIN, JA .
NEW PHYTOLOGIST, 1988, 108 (02) :211-218
[4]   Induction of Ltp (lipid transfer protein) and Pal (phenylalanine ammonia-lyase) gene expression in rice roots colonized by the arbuscular mycorrhizal fungus Glomus mosseae [J].
Blilou, I ;
Ocampo, JA ;
García-Garrido, JM .
JOURNAL OF EXPERIMENTAL BOTANY, 2000, 51 (353) :1969-1977
[5]   Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations [J].
Boisson-Dernier, A ;
Chabaud, M ;
Garcia, F ;
Bécard, G ;
Rosenberg, C ;
Barker, DG .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2001, 14 (06) :695-700
[6]   The Lotus japonicus LjS']jSym4 gene is required for the successful symbiotic infection of root epidermal cells [J].
Bonfante, P ;
Genre, A ;
Faccio, A ;
Martini, I ;
Schauser, L ;
Stougaard, J ;
Webb, J ;
Parniske, M .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2000, 13 (10) :1109-1120
[7]   INTERACTIONS BETWEEN 3 ALFALFA NODULATION GENOTYPES AND 2 GLOMUS SPECIES [J].
BRADBURY, SM ;
PETERSON, RL ;
BOWLEY, SR .
NEW PHYTOLOGIST, 1991, 119 (01) :115-120
[8]   The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates [J].
Buee, M ;
Rossignol, M ;
Jauneau, A ;
Ranjeva, R ;
Bécard, G .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2000, 13 (06) :693-698
[9]   Four genes of Medicago truncatula controlling components of a nod factor transduction pathway [J].
Catoira, R ;
Galera, C ;
de Billy, F ;
Penmetsa, RV ;
Journet, EP ;
Maillet, F ;
Rosenberg, C ;
Cook, D ;
Gough, C ;
Dénarié, J .
PLANT CELL, 2000, 12 (09) :1647-1665
[10]   Targeted inoculation of Medicago truncatula in vitro root cultures reveals MtENOD11 expression during early stages of infection by arbuscular mycorrhizal fungi [J].
Chabaud, M ;
Venard, C ;
Defaux-Petras, A ;
Bécard, G ;
Barker, DG .
NEW PHYTOLOGIST, 2002, 156 (02) :265-273