Enhanced kinetics of hydride-metal phase transition in magnesium by vacancy clustering

被引:21
作者
Checchetto, R. [1 ]
Bazzanella, N. [1 ]
Kale, A. [1 ]
Miotello, A. [1 ]
Mariazzi, S. [1 ]
Brusa, R. S. [1 ]
Mengucci, P. [2 ]
Macchi, C. [3 ,4 ]
Somoza, A. [4 ,5 ]
Egger, W. [6 ]
Ravelli, L. [6 ]
机构
[1] Univ Trent, Dipartimento Fis, I-38123 Trento, Italy
[2] Univ Politecn Marche, Dipartimento Fis & Ingn Mat & Territorio, I-60131 Ancona, Italy
[3] Consejo Nacl Invest Cient & Tecn, Tandil, Argentina
[4] UNCtr, IFIMAT, Tandil, Argentina
[5] CICPBA, Tandil, Argentina
[6] Univ Bunderswehr Munchen, Inst Angew Phys & Messtech, D-85577 Neubiberg, Germany
来源
PHYSICAL REVIEW B | 2011年 / 84卷 / 05期
关键词
POSITRON-ANNIHILATION; HYDROGEN DESORPTION; THIN-FILMS; SPECTROSCOPY; STORAGE; NIOBIUM; SOLIDS; MG;
D O I
10.1103/PhysRevB.84.054115
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The relation between vacancies and vacancy clusters evolution and the H(2) desorption kinetics was studied in nanocrystalline Mg samples submitted to successive H(2) sorption cycles. Vacancy defects were detected by positron annihilation lifetime spectroscopy while the desorption process was monitored measuring the H(2) desorption flux. During H(2) sorption cycles, vacancies disappear, the number of vacancy clusters increases, and the crystalline quality of the Mg grains increases. The disappearance of intragranular vacancies is followed by an acceleration of the H(2) desorption process. This is attributed to the increase of vacancy clusters at grain boundaries which assist the Mg nucleation in the hydride to metal phase transition. For H(2) sorption cycles, the values of vacancy and vacancy cluster concentrations were obtained into the frame of the positron diffusion trapping model and the size of the involved vacancy clusters was evaluated by ab initio calculations of positron annihilation rates in Mg.
引用
收藏
页数:7
相关论文
共 40 条
[11]  
Christian J.W., 2002, THEORY TRANSFORMATIO, V3rd, P422
[12]  
CORBEL P, 1995, POSITRON SPECTROSCOP, P491
[13]   POSITRON TRAPPING AT GRAIN-BOUNDARIES [J].
DUPASQUIER, A ;
ROMERO, R ;
SOMOZA, A .
PHYSICAL REVIEW B, 1993, 48 (13) :9235-9245
[14]   Pulsed low-energy positron beams in materials sciences [J].
Egger, W. .
PHYSICS WITH MANY POSITRONS, 2010, 174 :419-449
[15]   Positron depth profiling of the structural and electronic structure transformations of hydrogenated Mg-based thin films [J].
Eijt, S. W. H. ;
Kind, R. ;
Singh, S. ;
Schut, H. ;
Legerstee, W. J. ;
Hendrikx, R. W. A. ;
Svetchnikov, V. L. ;
Westerwaal, R. J. ;
Dam, B. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (04)
[16]   Rate determining step in the absorption and desorption of hydrogen by magnesium [J].
Fernández, JF ;
Sánchez, CR .
JOURNAL OF ALLOYS AND COMPOUNDS, 2002, 340 (1-2) :189-198
[17]   Analysis of electron-positron momentum spectra of metallic alloys as supported by first-principles calculations [J].
Folegati, P. ;
Makkonen, I. ;
Ferragut, R. ;
Puska, M. J. .
PHYSICAL REVIEW B, 2007, 75 (05)
[18]   Quantitative chemical analysis of vacancy-solute complexes in metallic solid solutions by coincidence Doppler broadening spectroscopy [J].
Folegati, P. ;
Dupasquier, A. ;
Ferragut, R. ;
Iglesias, M. M. ;
Makkonen, I. ;
Puska, M. J. .
PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 4, NO 10, 2007, 4 (10) :3493-+
[19]   Hydrogen diffusion in MgH2 and NaMgH3 via concerted motions of charged defects [J].
Hao, Shiqiang ;
Sholl, David S. .
APPLIED PHYSICS LETTERS, 2008, 93 (25)
[20]   TRAPPING OF POSITRONS AT VACANCIES IN MAGNESIUM [J].
HAUTOJARVI, P ;
JOHANSSON, J ;
VEHANEN, A ;
YLIKAUPPILA, J ;
HILLAIRET, J ;
TZANETAKIS, P .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1982, 27 (01) :49-56