High dimensional behavior of the Kardar-Parisi-Zhang growth dynamics

被引:25
作者
Castellano, C
Gabrielli, A
Marsili, M
Munoz, MA
Pietronero, L
机构
[1] Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy
[2] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[3] Univ Roma La Sapienza, Unita INFM, I-00185 Rome, Italy
[4] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy
[5] Scuola Int Super Studi Avanzati, I-34014 Trieste, Italy
[6] Unita INFM, I-34014 Trieste, Italy
来源
PHYSICAL REVIEW E | 1998年 / 58卷 / 05期
关键词
D O I
10.1103/PhysRevE.58.R5209
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate analytically the large dimensional behavior of the Kardar-Parisi-Zhang (KPZ) dynamics of surface growth using a recently proposed nonperturbative renormalization for self-affine surface dynamics. Within this framework, we show that the roughness exponent cu decays not faster than alpha similar to 1/d for large d. This implies the absence of a finite upper critical dimension. [S1063-651X(98)50611-3].
引用
收藏
页码:R5209 / R5212
页数:4
相关论文
共 27 条
[21]   Soluble infinite-range model of kinetic roughening [J].
Marsili, M ;
Bray, AJ .
PHYSICAL REVIEW LETTERS, 1996, 76 (15) :2750-2753
[22]   Stochastic growth equations and reparametrization invariance [J].
Marsili, M ;
Maritan, A ;
Toigo, F ;
Banavar, JR .
REVIEWS OF MODERN PHYSICS, 1996, 68 (04) :963-983
[23]   GLASSY SOLUTIONS OF THE KARDAR-PARISI-ZHANG EQUATION [J].
MOORE, MA ;
BLUM, T ;
DOHERTY, JP ;
MARSILI, M .
PHYSICAL REVIEW LETTERS, 1995, 74 (21) :4257-4260
[24]   RENORMALIZATION SCHEME FOR SELF-ORGANIZED CRITICALITY IN SANDPILE MODELS [J].
PIETRONERO, L ;
VESPIGNANI, A ;
ZAPPERI, S .
PHYSICAL REVIEW LETTERS, 1994, 72 (11) :1690-1693
[25]   NONLINEAR DEPOSITION - A NEW APPROACH [J].
SCHWARTZ, M ;
EDWARDS, SF .
EUROPHYSICS LETTERS, 1992, 20 (04) :301-305
[26]   ABSENCE OF FINITE UPPER CRITICAL DIMENSION IN THE SPHERICAL KARDAR-PARISI-ZHANG MODEL [J].
TU, YH .
PHYSICAL REVIEW LETTERS, 1994, 73 (23) :3109-3112
[27]   Systems with multiplicative noise: Critical behavior from KPZ equation and numerics [J].
Tu, YH ;
Grinstein, G ;
Munoz, MA .
PHYSICAL REVIEW LETTERS, 1997, 78 (02) :274-277