Pd-Catalyzed Electrohydrogenation of Carbon Dioxide to Formate: High Mass Activity at Low Overpotential and Identification of the Deactivation Pathway

被引:456
作者
Min, Xiaoquan [1 ]
Kanan, Matthew W. [1 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
ELECTROCHEMICAL REDUCTION; ELECTRO-REDUCTION; METAL-ELECTRODES; CO2; REDUCTION; FORMIC-ACID; ELECTROCATALYTIC REDUCTION; PDAG/PD(111) SURFACE; CONTINUOUS REACTOR; ROOM-TEMPERATURE; ADSORPTION;
D O I
10.1021/ja511890h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical reduction of CO2 to formate (HCO2-) powered by renewable electricity is a possible carbon-negative alternative to synthesizing formate from fossil fuels. This process is energetically inefficient because >1 V of overpotential is required for CO2 reduction to HCO2- on the metals currently used as cathodic catalysts. Pd reduces CO2 to HCO2- with no overpotential, but this activity has previously been limited to low synthesis rates and plagued by an unidentified deactivation pathway. Here we show that Pd nanoparticles dispersed on a carbon support reach high mass activities (50-80 mA HCO2- synthesis per mg Pd) when driven by less than 200 mV of overpotential in aqueous bicarbonate solutions. Electrokinetic measurements are consistent with a mechanism in which the rate-determining step is the addition of electrochemically generated surface adsorbed hydrogen to CO2 (i.e., electrohydrogenation). The electrodes deactivate over the course of several hours because of a minor pathway that forms CO. Activity is recovered, however, by removing CO with brief air exposure.
引用
收藏
页码:4701 / 4708
页数:8
相关论文
共 54 条
[1]   The Electrochemical Reduction of Carbon Dioxide to Formate/Formic Acid: Engineering and Economic Feasibility [J].
Agarwal, Arun S. ;
Zhai, Yumei ;
Hill, Davion ;
Sridhar, Narasi .
CHEMSUSCHEM, 2011, 4 (09) :1301-1310
[2]   Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation [J].
Appel, Aaron M. ;
Bercaw, John E. ;
Bocarsly, Andrew B. ;
Dobbek, Holger ;
DuBois, Daniel L. ;
Dupuis, Michel ;
Ferry, James G. ;
Fujita, Etsuko ;
Hille, Russ ;
Kenis, Paul J. A. ;
Kerfeld, Cheal A. ;
Morris, Robert H. ;
Peden, Charles H. F. ;
Portis, Archie R. ;
Ragsdale, Stephen W. ;
Rauchfuss, Thomas B. ;
Reek, Joost N. H. ;
Seefeldt, Lance C. ;
Thauer, Rudolf K. ;
Waldrop, Grover L. .
CHEMICAL REVIEWS, 2013, 113 (08) :6621-6658
[3]   Catalysis for the Valorization of Exhaust Carbon: from CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2 [J].
Aresta, Michele ;
Dibenedetto, Angela ;
Angelini, Antonella .
CHEMICAL REVIEWS, 2014, 114 (03) :1709-1742
[4]   ELECTROCHEMICAL REDUCTION OF CARBON-DIOXIDE ON VARIOUS METAL-ELECTRODES IN LOW-TEMPERATURE AQUEOUS KHCO3 MEDIA [J].
AZUMA, M ;
HASHIMOTO, K ;
HIRAMOTO, M ;
WATANABE, M ;
SAKATA, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (06) :1772-1778
[5]  
Behr A., 2014, CO2 CHEM
[6]  
BREITER MW, 1977, J ELECTROANAL CHEM, V81, P275, DOI 10.1016/0368-1874(77)80303-1
[7]   Tin Oxide Dependence of the CO2 Reduction Efficiency on Tin Electrodes and Enhanced Activity for Tin/Tin Oxide Thin-Film Catalysts [J].
Chen, Yihong ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (04) :1986-1989
[8]   Catalysis of the electrochemical reduction of carbon dioxide [J].
Costentin, Cyrille ;
Robert, Marc ;
Saveant, Jean-Michel .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (06) :2423-2436
[9]   Continuous Electroreduction of CO2 to Formate Using Sn Gas Diffusion Electrodes [J].
Del Castillo, Andres ;
Alvarez-Guerra, Manuel ;
Irabien, Angel .
AICHE JOURNAL, 2014, 60 (10) :3557-3564
[10]   Determination of the Real Surface Area of Palladium Electrode [J].
Fang, Lan-lan ;
Tao, Qian ;
Li, Ming-fang ;
Liao, Ling-wen ;
Chen, Dong ;
Chen, Yan-xia .
CHINESE JOURNAL OF CHEMICAL PHYSICS, 2010, 23 (05) :543-548