Conjunctive Bayesian networks

被引:59
作者
Beerenwinkel, Niko [1 ]
Eriksson, Nicholas
Sturmfels, Bernd
机构
[1] Swiss Fed Inst Technol, Dept Biosyst Sci & Engn, CH-4058 Basel, Switzerland
[2] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
[3] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
Bayesian network; distributive lattice; Grobner basis; maximum likelihood estimation; Mobius transform; mutagenetic tree; oncogenetic tree; sagbi basis; toric variety;
D O I
10.3150/07-BEJ6133
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Conjunctive Bayesian networks (CBNs) are graphical models that describe the accumulation of events which are constrained in the order of their occurrence. A CBN is given by a partial order on a (finite) set of events. CBNs generalize the oncogenetic tree models of Desper et al. by allowing the occurrence of an event to depend on more than one predecessor event. The present paper studies the statistical and algebraic properties of CBNs. We determine the maximum likelihood parameters and present a combinatorial solution to the model selection problem. Our method performs well on two datasets where the events are HIV mutations associated with drug resistance. Concluding with a study of the algebraic properties of CBNs, we show that CBNs are toric varieties after a coordinate transformation and that their ideals possess a quadratic Grobner basis.
引用
收藏
页码:893 / 909
页数:17
相关论文
共 27 条
[1]   ON THE RELATION BETWEEN CONDITIONAL-INDEPENDENCE MODELS DETERMINED BY FINITE DISTRIBUTIVE LATTICES AND BY DIRECTED ACYCLIC GRAPHS [J].
ANDERSSON, SA ;
MADIGAN, D ;
PERLMAN, MD ;
TRIGGS, CM .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1995, 48 (01) :25-46
[2]   LATTICE MODELS FOR CONDITIONAL-INDEPENDENCE IN A MULTIVARIATE NORMAL-DISTRIBUTION [J].
ANDERSSON, SA ;
PERLMAN, MD .
ANNALS OF STATISTICS, 1993, 21 (03) :1318-1358
[3]  
[Anonymous], 1988, PROBABILISTIC REASON, DOI DOI 10.1016/C2009-0-27609-4
[4]   Estimating HIV evolutionary pathways and the genetic barrier to drug resistance [J].
Beerenwinkel, N ;
Däumer, M ;
Sing, T ;
Rahnenführer, J ;
Lengauer, T ;
Selbig, J ;
Hoffmann, D ;
Kaiser, R .
JOURNAL OF INFECTIOUS DISEASES, 2005, 191 (11) :1953-1960
[5]   Learning multiple evolutionary pathways from cross-sectional data [J].
Beerenwinkel, N ;
Rahnenführer, J ;
Däumer, M ;
Hoffmann, D ;
Kaiser, R ;
Selbig, J ;
Lengauer, T .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2005, 12 (06) :584-598
[6]  
BEERENWINKEL N, 2005, ALGEBRAIC STAT COMPU, P278
[7]   A mutagenetic tree hidden Markov model for longitudinal clonal HIV sequence data [J].
Beerenwinkel, Niko ;
Drton, Mathias .
BIOSTATISTICS, 2007, 8 (01) :53-71
[8]   Evolution on distributive lattices [J].
Beerenwinkel, Niko ;
Eriksson, Nicholas ;
Sturmfels, Bernd .
JOURNAL OF THEORETICAL BIOLOGY, 2006, 242 (02) :409-420
[9]   The maximum likelihood degree [J].
Catanese, Fabrizio ;
Hosten, Serkan ;
Khetan, Amit ;
Sturmfels, Bernd .
AMERICAN JOURNAL OF MATHEMATICS, 2006, 128 (03) :671-697
[10]   Genetic correlates of in vivo viral resistance to indinavir, a human immunodeficiency virus type 1 protease inhibitor [J].
Condra, JH ;
Holder, DJ ;
Schleif, WA ;
Blahy, OM ;
Danovich, RM ;
Gabryelski, LJ ;
Graham, DJ ;
Laird, D ;
Quintero, JC ;
Rhodes, A ;
Robbins, HL ;
Roth, E ;
Shivaprakash, M ;
Yang, T ;
Chodakewitz, JA ;
Deutsch, PJ ;
Leavitt, RY ;
Massari, FE ;
Mellors, JW ;
Squires, KE ;
Steigbigel, RT ;
Teppler, H ;
Emini, EA .
JOURNAL OF VIROLOGY, 1996, 70 (12) :8270-8276