Cell-mediated drug delivery

被引:262
作者
Batrakova, Elena V. [1 ]
Gendelman, Howard E. [1 ,2 ,3 ]
Kabanov, Alexander V. [1 ,3 ,4 ]
机构
[1] Univ Nebraska Med Ctr, Ctr Drug Delivery & Nanomed, Dept Pharmaceut Sci, Omaha, NE 68198 USA
[2] Univ Nebraska Med Ctr, Ctr Neurodegenerat Disorders, Omaha, NE 68198 USA
[3] Univ Nebraska Med Ctr, Dept Pharmacol & Expt Neurosci, Omaha, NE 68198 USA
[4] Moscow MV Lomonosov State Univ, Dept Chem, Moscow 119991, Russia
基金
美国国家卫生研究院;
关键词
MESENCHYMAL STEM-CELLS; BLOOD-BRAIN-BARRIER; MARROW STROMAL CELLS; POLYION COMPLEX MICELLES; CHARGED BLOCK-COPOLYMERS; RAT GLIOMA MODEL; PARKINSONS-DISEASE; MACROPHAGE DELIVERY; NEUROTROPHIC FACTOR; SURFACE-CHARGE;
D O I
10.1517/17425247.2011.559457
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Areas covered: This paper reviews how immunocytes laden with drugs can cross the blood--brain or blood--tumor barriers to facilitate treatments for infectious diseases, injury, cancer, or inflammatory diseases. The promises and perils of cell-mediated drug delivery are reviewed, with examples of how immunocytes can be harnessed to improve therapeutic end points. Expert opinion: Using cells as delivery vehicles enables targeted drug transport and prolonged circulation times, along with reductions in cell and tissue toxicities. Such systems for drug carriage and targeted release represent a new disease-combating strategy being applied to a spectrum of human disorders. The design of nanocarriers for cell-mediated drug delivery may differ from those used for conventional drug delivery systems; nevertheless, engaging different defense mechanisms in drug delivery may open new perspectives for the active delivery of drugs.
引用
收藏
页码:415 / 433
页数:19
相关论文
共 113 条
  • [11] Adenosine augmentation therapies (AATs) for epilepsy: Prospect of cell and gene therapies
    Boison, Detlev
    [J]. EPILEPSY RESEARCH, 2009, 85 (2-3) : 131 - 141
  • [12] Engineered Adenosine-Releasing Cells for Epilepsy Therapy: Human Mesenchymal Stem Cells and Human Embryonic Stem Cells
    Boison, Detlev
    [J]. NEUROTHERAPEUTICS, 2009, 6 (02) : 278 - 283
  • [13] Brynskikh AM, 2010, NANOMEDICINE-UK, V5, P379, DOI [10.2217/nnm.10.7, 10.2217/NNM.10.7]
  • [14] Self-assembled peptide amphiphile nanofibers conjugated to MRI contrast agents
    Bull, SR
    Guler, MO
    Bras, RE
    Meade, TJ
    Stupp, SI
    [J]. NANO LETTERS, 2005, 5 (01) : 1 - 4
  • [15] Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery
    Calvo, P
    Gouritin, B
    Chacun, H
    Desmaële, D
    D'Angelo, J
    Noel, JP
    Georgin, D
    Fattal, E
    Andreux, JP
    Couvreur, P
    [J]. PHARMACEUTICAL RESEARCH, 2001, 18 (08) : 1157 - 1166
  • [16] CANNON GJ, 1992, J CELL SCI, V101, P907
  • [17] Casper D, 2002, CELL TRANSPLANT, V11, P331
  • [18] Making polymeric micro- and nanoparticles of complex shapes
    Champion, Julie A.
    Katare, Yogesh K.
    Mitragotri, Samir
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (29) : 11901 - 11904
  • [19] Nanoparticulate Cellular Patches for Cell-Mediated Tumoritropic Delivery
    Cheng, Hao
    Kastrup, Christian J.
    Ramanathan, Renuka
    Siegwart, Daniel J.
    Ma, Minglin
    Bogatyrev, Said R.
    Xu, Qiaobing
    Whitehead, Kathryn A.
    Langer, Robert
    Anderson, Daniel G.
    [J]. ACS NANO, 2010, 4 (02) : 625 - 631
  • [20] A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors
    Choi, Mi-Ran
    Stanton-Maxey, Katie J.
    Stanley, Jennifer K.
    Levin, Carly S.
    Bardhan, Rizia
    Akin, Demir
    Badve, Sunil
    Sturgis, Jennifer.
    Robinson, J. Paul
    Bashir, Rashid
    Halas, Naomi J.
    Clare, Susan E.
    [J]. NANO LETTERS, 2007, 7 (12) : 3759 - 3765