Triggered Polycatenated DNA Scaffolds for DNA Sensors and Aptasensors by a Combination of Rolling Circle Amplification and DNAzyme Amplification

被引:110
作者
Bi, Sai [1 ]
Li, Li [1 ]
Zhang, Shusheng [1 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Chem & Mol Engn, State Key Lab Base Ecochem Engn, Qingdao 266042, Peoples R China
基金
中国国家自然科学基金;
关键词
SIGNAL AMPLIFICATION; SINGLE; CASCADES; ASSAY; PROTEINS; GOLD;
D O I
10.1021/ac1021198
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The concept of triggered polycatenated DNA scaffolds has been elegantly introduced into ultrasensitive biosensing applications by a combination of rolling circle amplification (RCA) and DNAzyme amplification. As compared to traditional methods in which one target could only initiate the formation of one circular template for RCA reaction, in the present study two species of linear single-stranded DNA (ssDNA) monomers are self-assembled into mechanically interlocked polycatenated nanostructures on capture probe-tagged magnetic nanoparticles (MNPs) only upon the introduction of one base mutant DNA sequence as initiator for single-nucleotide polymorphisms (SNPs) analysis. The resultant topologically polycatenated DNA ladder is further available for RCA process by using the serially ligated circular DNA as template for the synthesis of hemin/G-quadruplex HRP-mimicking DNAzyme chains, which act as biocatalytic labels for the luminol-H2O2 chemiluminescence (CL) system. Notably, the problem of high background induced by excess hemin itself is circumvented by immobilizing the biotinylated RCA products on streptavidin-modified MNPs via biotin-streptavidin interaction. Similarly, a universal strategy is contrived by substitutedly employing aptamer as initiator for the construction of polycatenated DNA scaffolds to accomplish ultrasensitive detection of proteins based on structure-switching of aptamer upon target binding, which is demonstrated by using thrombin as a model analyte in this study. Overall, with two successive amplification steps and one magnetic separation procedure, this flexible biosensing system exhibits not only high sensitivity and specificity with the detection limits of SNPs and thrombin as low as 71 aM and 6.6 pM, respectively, but also excellent performance in real human serum assay with no PCR preamplification for SNPs assay. Given the unique and attractive characteristics, this study illustrates the potential of DNA nanotechnology in bioanalytical applications for both fundamental and practical research.
引用
收藏
页码:9447 / 9454
页数:8
相关论文
共 41 条
[1]  
Ackermann D, 2010, NAT NANOTECHNOL, V5, P436, DOI [10.1038/NNANO.2010.65, 10.1038/nnano.2010.65]
[2]   Assembling materials with DNA as the guide [J].
Aldaye, Faisal A. ;
Palmer, Alison L. ;
Sleiman, Hanadi F. .
SCIENCE, 2008, 321 (5897) :1795-1799
[3]  
Aldaye FA, 2009, NAT NANOTECHNOL, V4, P349, DOI [10.1038/nnano.2009.72, 10.1038/NNANO.2009.72]
[4]   Colorimetric Sensing by Using Allosteric-DNAzyme-Coupled Rolling Circle Amplification and a Peptide Nucleic Acid-Organic Dye Probe [J].
Ali, M. Monsur ;
Li, Yingfu .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (19) :3512-3515
[5]   Bio-bar-code dendrimer-like DNA as signal amplifier for cancerous cells assay using ruthenium nanoparticle-based ultrasensitive chemiluminescence detection [J].
Bi, Sai ;
Hao, Shuangyuan ;
Li, Li ;
Zhang, Shusheng .
CHEMICAL COMMUNICATIONS, 2010, 46 (33) :6093-6095
[6]   Ultrasensitive and selective DNA detection based on nicking endonuclease assisted signal amplification and its application in cancer cell detection [J].
Bi, Sai ;
Zhang, Jilei ;
Zhang, Shusheng .
CHEMICAL COMMUNICATIONS, 2010, 46 (30) :5509-5511
[7]   Bio-bar-code functionalized magnetic nanoparticle label for ultrasensitive flow injection chemiluminescence detection of DNA hybridization [J].
Bi, Sai ;
Zhou, Hong ;
Zhang, Shusheng .
CHEMICAL COMMUNICATIONS, 2009, (37) :5567-5569
[8]   Synthesis and characterization of topologically linked single-stranded DNA rings [J].
Billen, LP ;
Li, YF .
BIOORGANIC CHEMISTRY, 2004, 32 (06) :582-598
[9]   Analytical performances of aptamer-based sensing for thrombin detection [J].
Bini, Alessandra ;
Minunni, Maria ;
Tombelli, Sara ;
Centi, Sonia ;
Mascini, Marco .
ANALYTICAL CHEMISTRY, 2007, 79 (07) :3016-3019
[10]   Diagnosing viruses by the rolling circle amplified synthesis of DNAzymes [J].
Cheglakov, Zoya ;
Weizmann, Yossi ;
Basnar, Bernhard ;
Willner, Itamar .
ORGANIC & BIOMOLECULAR CHEMISTRY, 2007, 5 (02) :223-225