Half-Heusler compounds with a 1 eV (1.7 eV) direct band gap, lattice-matched to GaAs (Si), for solar cell application: A first-principles study

被引:26
作者
Belmiloud, N. [1 ]
Boutaiba, F. [1 ]
Belabbes, A. [2 ]
Ferhat, M. [1 ]
Bechstedt, F. [3 ]
机构
[1] USTO, Dept Genie Phys, LPMF, Oran, Algeria
[2] KAUST, Thuwal 239556900, Saudi Arabia
[3] Univ Jena, Inst Festkorpertheorie & Opt, Max Wien Pl 1, D-07743 Jena, Germany
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2016年 / 253卷 / 05期
关键词
band-gap energy; band offsets; density functional perturbation theory (DFPT); first principles calculations; half-Heusler compounds; solar; ELECTRONIC-STRUCTURE; SEMICONDUCTORS; ALLOYS; INSULATORS; DIODES;
D O I
10.1002/pssb.201552674
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
A systematic theoretical study of the structural and electronic properties of new half-Heusler compounds is performed to find the appropriate target key physical parameters for photovoltaic application. As a result, five ternary half-Heusler compounds ScAgC, YCuC, CaZnC, NaAgO, and LiCuS are studied by density functional theory for potential applications in multi-junction solar cells. The calculated formation enthalpies indicate that these materials are thermodynamically stable. Using state-of-the-art modified Becke-Johnson exchange potential approximation, we find a direct band gap close to 1 eV (similar to 1.88 eV) for ScAgC, YCuC, CaZnC, NaAgO (LiCuS) being quasi-lattice matched to GaAs (Si). In addition, the band offsets between half-Heusler compounds and GaAs (Si) and their consequences for heterostructures are derived using the modified Tersoff method for the branch-point energy. Furthermore, the elastic constants and phonon dispersion curves are calculated. They indicate the respective mechanical and dynamical stability of these half-Heusler compounds. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:889 / 894
页数:6
相关论文
共 52 条
[31]  
Perdew JP, 1997, PHYS REV LETT, V78, P1396, DOI 10.1103/PhysRevLett.77.3865
[32]   Half-Heusler Semiconductors as Piezoelectrics [J].
Roy, Anindya ;
Bennett, Joseph W. ;
Rabe, Karin M. ;
Vanderbilt, David .
PHYSICAL REVIEW LETTERS, 2012, 109 (03)
[33]   DEPENDENCE ON VOLUME OF THE PHONON FREQUENCIES AND THEIR EFFECTIVE CHARGES OF SEVERAL III-V SEMICONDUCTORS [J].
SANJURJO, JA ;
LOPEZCRUZ, E ;
VOGL, P ;
CARDONA, M .
PHYSICAL REVIEW B, 1983, 28 (08) :4579-4584
[34]   Branch-point energies and band discontinuities of III-nitrides and III-/II-oxides from quasiparticle band-structure calculations [J].
Schleife, A. ;
Fuchs, F. ;
Roedl, C. ;
Furthmueller, J. ;
Bechstedt, F. .
APPLIED PHYSICS LETTERS, 2009, 94 (01)
[35]   Electronic band structure of highly mismatched GaN1-xSbx alloys in a broad composition range [J].
Segercrantz, N. ;
Yu, K. M. ;
Ting, M. ;
Sarney, W. L. ;
Svensson, S. P. ;
Novikov, S. V. ;
Foxon, C. T. ;
Walukiewicz, W. .
APPLIED PHYSICS LETTERS, 2015, 107 (14)
[36]   Cu2Zn(Sn,Ge)Se4 and Cu2Zn(Sn,Si)Se4 alloys as photovoltaic materials: Structural and electronic properties [J].
Shu, Qiang ;
Yang, Ji-Hui ;
Chen, Shiyou ;
Huang, Bing ;
Xiang, Hongjun ;
Gong, Xin-Gao ;
Wei, Su-Huai .
PHYSICAL REVIEW B, 2013, 87 (11)
[37]   The ferromagnetism of nickel II. Temperature effects [J].
Slater, JC .
PHYSICAL REVIEW, 1936, 49 (12) :0931-0937
[38]   Enhanced conversion efficiency in wide-bandgap GaNP solar cells [J].
Sukrittanon, S. ;
Liu, R. ;
Ro, Y. G. ;
Pan, J. L. ;
Jungjohann, K. L. ;
Tu, C. W. ;
Dayeh, S. A. .
APPLIED PHYSICS LETTERS, 2015, 107 (15)
[39]   SCHOTTKY BARRIERS AND SEMICONDUCTOR BAND STRUCTURES [J].
TERSOFF, J .
PHYSICAL REVIEW B, 1985, 32 (10) :6968-6971
[40]   Dynamical behaviour in the boron III-V group: A first-principles study [J].
Touat, D. ;
Ferhat, M. ;
Zaoui, A. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (15) :3647-3654