Stability of carbon nanotubes under electron irradiation: Role of tube diameter and chirality

被引:140
作者
Krasheninnikov, AV
Banhart, F
Li, JX
Foster, AS
Nieminen, RM
机构
[1] Aalto Univ, Phys Lab, Helsinki 02015, Finland
[2] Univ Helsinki, Accelerator Lab, FIN-00014 Helsinki, Finland
[3] Johannes Gutenberg Univ Mainz, Inst Phys Chem, D-55099 Mainz, Germany
关键词
D O I
10.1103/PhysRevB.72.125428
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
As recent experiments demonstrate, the inner shells of multiwalled carbon nanotubes are more sensitive to electron irradiation than the outer shells. To understand the origin of such counterintuitive behavior, we employ a density-functional-theory based tight-binding method and calculate the displacement threshold energies for carbon atoms in single-walled nanotubes with different diameters and chiralities. We show that the displacement energy and the defect production rate strongly depend on the diameter of the nanotube and its chirality, with the displacement energy being lower, but saturating towards the value for graphite when the tube diameter increases. This implies that the threshold electron energies to produce damage in nanotubes with diameters smaller than 1 nm are less than the commonly accepted value for graphitic nanoparticles. We also calculate the displacement energies for carbon atoms near defects and show that if a single vacancy is formed, it will likely be transformed to a double vacancy, as the nanotube atomic network with double vacancies has no energetically unfavorable undercoordinated atoms.
引用
收藏
页数:6
相关论文
共 34 条
[11]  
Golberg D, 1999, RRD APPL PHYS, V2, P1
[12]   Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime [J].
Gómez-Navarro, C ;
De Pablo, PJ ;
Gómez-Herrero, J ;
Biel, B ;
Garcia-Vidal, FJ ;
Rubio, A ;
Flores, F .
NATURE MATERIALS, 2005, 4 (07) :534-539
[13]   Direct evidence for atomic defects in graphene layers [J].
Hashimoto, A ;
Suenaga, K ;
Gloter, A ;
Urita, K ;
Iijima, S .
NATURE, 2004, 430 (7002) :870-873
[14]   Catalysis of nanotube plasticity under tensile strain [J].
Jensen, P ;
Gale, J ;
Blase, X .
PHYSICAL REVIEW B, 2002, 66 (19) :1-4
[15]   Structural modification of single-layer carbon nanotubes with an electron beam [J].
Kiang, CH ;
Goddard, WA ;
Beyers, R ;
Bethune, DS .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (09) :3749-3752
[16]   Reinforcement of single-walled carbon nanotube bundles by intertube bridging [J].
Kis, A ;
Csányi, G ;
Salvetat, JP ;
Lee, TN ;
Couteau, E ;
Kulik, AJ ;
Benoit, W ;
Brugger, J ;
Forró, L .
NATURE MATERIALS, 2004, 3 (03) :153-157
[17]   Irradiation effects in carbon nanotubes [J].
Krasheninnikov, AV ;
Nordlund, K .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2004, 216 :355-366
[18]   Adsorption and migration of carbon adatoms on carbon nanotubes:: Density-functional ab initio and tight-binding studies -: art. no. 073402 [J].
Krasheninnikov, AV ;
Nordlund, K ;
Lehtinen, PO ;
Foster, AS ;
Ayuela, A ;
Nieminen, RM .
PHYSICAL REVIEW B, 2004, 69 (07)
[19]   Production of defects in supported carbon nanotubes under ion irradiation [J].
Krasheninnikov, AV ;
Nordlund, K ;
Keinonen, J .
PHYSICAL REVIEW B, 2002, 65 (16) :1-8
[20]   Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
PHYSICAL REVIEW B, 1996, 54 (16) :11169-11186